ZIMPL User Guide
(Zuse Institute Mathematical Programming Language)

Thorsten Koch

for Version 3.3.8

May 30, 2018

Contents

<table>
<thead>
<tr>
<th>1 Preface</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>3 Invocation</td>
<td>5</td>
</tr>
<tr>
<td>4 Format</td>
<td>5</td>
</tr>
<tr>
<td>4.1 Expressions</td>
<td>6</td>
</tr>
<tr>
<td>4.2 Tuples and sets</td>
<td>8</td>
</tr>
<tr>
<td>4.3 Parameters</td>
<td>10</td>
</tr>
<tr>
<td>4.4 Initializing sets and parameters from a file</td>
<td>12</td>
</tr>
<tr>
<td>4.5 sum-expressions</td>
<td>13</td>
</tr>
<tr>
<td>4.6 forall-statements</td>
<td>14</td>
</tr>
<tr>
<td>4.7 Function definitions</td>
<td>14</td>
</tr>
<tr>
<td>4.8 The do print and do check commands</td>
<td>14</td>
</tr>
<tr>
<td>5 Models</td>
<td>14</td>
</tr>
<tr>
<td>5.1 Variables</td>
<td>15</td>
</tr>
<tr>
<td>5.2 Objective</td>
<td>15</td>
</tr>
<tr>
<td>5.3 Constraints</td>
<td>15</td>
</tr>
<tr>
<td>6 Modeling examples</td>
<td>19</td>
</tr>
<tr>
<td>6.1 The diet problem</td>
<td>19</td>
</tr>
<tr>
<td>6.2 The traveling salesman problem</td>
<td>20</td>
</tr>
<tr>
<td>6.3 The capacitated facility location problem</td>
<td>21</td>
</tr>
<tr>
<td>6.4 The n-queens problem</td>
<td>23</td>
</tr>
<tr>
<td>7 Error messages</td>
<td>27</td>
</tr>
</tbody>
</table>
Abstract

ZIMPL is a little language in order to translate the mathematical model of a problem into a linear or (mixed-)integer mathematical program, expressed in LP or MPS file format which can be read and (hopefully) solved by a LP or MIP solver.

1 Preface

May the source be with you, Luke!

Many of the things in ZIMPL (and a lot more) can be found in the excellent book about the modeling language AMPL from Robert Fourer, David N. Gay and Brian W. Kernighan [FGK03]. Those interested in an overview of the current state-of-the-art in (commercial) modeling languages might have a look at [Kal04b]. On the other hand, having the source code of a program has its advantages. The possibility to run it regardless of architecture and operating system, the ability to modify it to suit the needs, and not having to hassle with license managers may make a much less powerful program the better choice. And so ZIMPL came into being.

By now ZIMPL has grown up and matured. It has been used in several industrial projects and university lectures, showing that it is able to cope with large-scale models and also with students. This would not have been possible without my early adopters Armin Fügenschuh, Marc Pfetsch, Sascha Lukac, Daniel Junglas, Jörg Rambau, and Tobias Achterberg. Thanks for their comments and bug reports. Special thanks to Tuomo Takkula for revising this manual.

ZIMPL is licensed under the GNU Lesser General Public License Version 3. For more information on free software see http://www.gnu.org. The latest version of ZIMPL can be found at http://zimpl.zib.de. If you find any bugs, then please send an email to mailto:koch@zib.de, and do not forget to include an example that shows the problem. If somebody extends ZIMPL, then I am interested in getting patches to include them into the main distribution.

The best way to refer to ZIMPL in a publication is to cite my PhD thesis [Koc04]

```latex
@PHDTHESIS{Koch2004,
  author  = "Thorsten Koch",
  title   = "Rapid Mathematical Programming",
  school  = "Technische Universit"at Berlin",
  year    = "2004",
  url     = "http://www.zib.de/Publications/abstracts/ZR-04-58/",
  note    = "ZIB-Report 04-58"
}
```
2 Introduction

Consider the LP formulation of the shortest s, t-path problem, applied to some directed graph \((V,A)\) with cost coefficient \(c_{ij}\) for all \((i,j) \in A\):

\[
\begin{align*}
\min \ & \sum_{(i,j) \in A} c_{ij}x_{ij} \\
\text{s.t.} \ & \sum_{(iv) \in \delta^{-}(v)} x_{iv} = \sum_{(vi) \in \delta^{+}(v)} x_{vi} \quad \text{for all } v \in V \setminus \{s,t\}
\end{align*}
\]

\[x_{ij} \in \{0,1\}, \text{for all } i,j \in A\]

where \(\delta^{+}(v) := \{(v,i) \in A\}, \delta^{-}(v) := \{(i,v) \in A\} \) for \(v \in V\). For a given graph the instantiation is

\[
\begin{align*}
\begin{array}{l}
\text{min} & \quad 17x_{sa} + 47x_{sb} + 19x_{ab} + 53x_{at} + 23x_{bt} \\
\text{subject to} & \quad x_{sa} = x_{ab} + x_{at} \\
& \quad x_{ab} + x_{bt} = x_{bt} \\
& \quad x_{ij} \in \{0,1\}, \text{for all } i,j
\end{array}
\end{align*}
\]

The standard format used to feed such a problem into a solver is called MPS which was invented by IBM for the Mathematical Programming System/360 in the sixties \[\text{[Kal04a, Spi04]}\]. Nearly all available LP and MIP solvers can read this format. While MPS is a nice format to punch into a punch card and at least a reasonable format to read for a computer, it is quite unreadable for humans. For instance, the MPS file of the above linear program looks as follows:

\text{NAME} \quad \text{shortestpath.lp} \\
\text{ROWS} \\
N \quad \text{Obj} \\
E \quad c0 \\
E \quad c1 \\
E \quad c2 \\
\text{COLUMNS} \\
\text{INTSTART} \quad \text{MARKER} \quad \text{INTORG} \\
x0 \quad \text{Obj} \quad 17 \quad c0 \quad 1 \\
x0 \quad \text{c2} \quad 1 \\
x1 \quad \text{Obj} \quad 47 \quad c1 \quad 1 \\
x1 \quad \text{c2} \quad 1 \\
x2 \quad \text{c1} \quad 1 \quad c0 \quad -1 \\
x2 \quad \text{Obj} \quad 19 \\
x3 \quad \text{Obj} \quad 53 \quad c0 \quad -1 \\
x4 \quad \text{c1} \quad -1 \quad \text{Obj} \quad 23 \\
\text{RHS} \\
\text{RHS} \quad c2 \quad 1 \\
\text{BOUNDS} \\
\text{UP Bound} \quad x0 \quad 1 \\
\text{UP Bound} \quad x1 \quad 1 \\
\text{UP Bound} \quad x2 \quad 1 \\
\text{UP Bound} \quad x3 \quad 1 \\
\text{UP Bound} \quad x4 \quad 1 \\
\text{ENDDATA}
Another possibility is the LP format which is more readable, quite similar to the instantiation, but only supported by a few solvers:

Minimize
\[\text{Obj: } +17 x_0 +47 x_1 +19 x_2 +53 x_3 +23 x_4 \]
Subject to
\[\begin{align*}
&c_0: -1 x_3 -1 x_2 +1 x_0 = +0 \\
&c_1: -1 x_4 +1 x_2 +1 x_1 = +0 \\
&c_2: +1 x_1 +1 x_0 = +1
\end{align*} \]
Bounds
\[\begin{align*}
0 &\leq x_0 \leq 1 \\
0 &\leq x_1 \leq 1 \\
0 &\leq x_2 \leq 1 \\
0 &\leq x_3 \leq 1 \\
0 &\leq x_4 \leq 1
\end{align*} \]
Generals
\[x_0 x_1 x_2 x_3 x_4 \]
End

Since each coefficient of the matrix \(A \) must be stated explicitly it is also not a desirable choice for the development of a mathematical model.

Abstract formulation

Now, with ZIMPL it is possible to write

```zimpl
set V :={"a","b","s","t"};
set A :={"s","a","s","b","a","b","a","t","b","t"};
param c[A] :={"s","a"} 17, {"s","b"} 47, {"a","b"} 19, {"a","t"} 53, {"b","t"} 23;
defset dminus(v) := {<i,v> in A};
defset dplus(v) := {<v,i> in A};
var x[A] binary;
minimize cost: sum<i,j> in A: c[i,j] * x[i,j];
subto fc:
    forall <v> in V -{"s","t"}:
        sum<i,v> in dminus(v): x[i,v] == sum<v,i> in dplus(v): x[v,i];
subto uf:
    sum<s,i> in dplus("s"): x[s,i] == 1;
```

– compare this with \([1]\). Feeding the script into ZIMPL will automatically generate MPS or LP files.

The value of modeling languages like ZIMPL lies in their ability to work directly on the mathematical model in lieu of dealing merely with coefficients. Furthermore, more often than not instantiations (read LP or MPS-files) of models are generated from some external data. In some sense, these are the result of the model applied to this external data. In our example above, the external data is the graph together with the cost coefficients and the specification of \(s \) and \(t \), and the model is the formulation of the shortest \(st \)-path problem. Of course, ZIMPL supports the initialization of models from files. For instance, the first lines from the ZIMPL script above can be replaced by

\[\text{Obj: } +17 x_0 +47 x_1 +19 x_2 +53 x_3 +23 x_4 \]

1 The LP format has also some idiosyncratic restrictions. For example variables should not be named \(e_{12} \) or the like. and it is not possible to specify ranged constraints.
3 Invocation

In order to run ZIMPL on a model given in the file `ex1.zpl` type the command:

```
zimpl ex1.zpl
```

In general terms the command is:

```
zimpl [options] <input-files>
```

It is possible to give more than one input file. They are read one after the other as if they were all one big file. If any error occurs while processing, ZIMPL prints out an error message and aborts. In case everything goes well, the results are written into two or more files, depending on the specified options.

The first output file is the problem generated from the model in either `cplexlp`, `mps`, or a “human readable” format, with extensions `.lp`, `.mps`, or `.hum`, respectively. The next one is the table file which has the extension `.tbl`. The table file lists all variable and constraint names used in the model and their corresponding names in the problem file. The reason for this name translation is the limitation of the length of names in the `mps` format to eight characters. Also the `lp` format restricts the length of names. The precise limit is depending on the version. CPLEX 7.0 has a limit of 16 characters, and ignores silently the rest of the name, while CPLEX 9.0 has a limit of 255 characters, but will for some commands only show the first 20 characters in the output.

A complete list of all options understood by ZIMPL can be found in Table 1. A typical invocation of ZIMPL is for example:

```
zimpl -o solveme -t mps data.zpl model.zpl
```

This reads the files data.zpl and model.zpl as input and produces as output the files solveme.mps and solveme.tbl. Note that in case `mps`-output is specified for a maximization problem, the objective function will be inverted, because the `mps` format has no provision for stating the sense of the objective function. The default is to assume minimization.

4 Format

Each `zpl`-file consists of six types of statements:

- Sets
- Parameters
- Variables
- Objective
- Constraints
- Function definitions

Each statement ends with a semicolon. Everything from a hash-sign `#`, provided it is not part of a string, to the end of the line is treated as a comment and is ignored. If a line starts with the word `include` followed by a filename in double quotation marks, then this file is read and processed instead of the line.
Table 1: ZIMPL options

4.1 Expressions

ZIMPL works on its lowest level with two types of data: Strings and numbers. Wherever a number or string is required it is also possible to use a parameter of the corresponding value type. In most cases, expressions are allowed instead of just a number or a string. The precedence of operators is the usual one, but parentheses can always be used to specify the evaluation order explicitly.

Numeric expressions

A number in ZIMPL can be given in the usual format, e.g. as 2, -6.5 or 5.234e-12. Numeric expressions consist of numbers, numerically valued parameters, and any of
the operators and functions listed in Table 2. Additionally the functions shown in Table 3 can be used. Note that those functions are only computed with normal double precision floating-point arithmetic and therefore have limited accuracy. Examples on how to use the min and max functions can be found in Section 4.3 on page 10.

a \cdot b	a \cdot b	a to the power of b	a^b, b must be integer			
a+b	a+b	addition	a + b			
a-b	a-b	subtraction	a − b			
a\cdot b	a \cdot b	multiplication	a \cdot b			
a/b	a/b	division	a/b			
a \mod b	a \mod b	modulo	a \mod b			
abs(a)	abs(a)	absolute value		a		
sgn(a)	sgn(a)	sign	x > 0 ⇒ 1, x < 0 ⇒ −1, else 0			
floor(a)	floor(a)	round down	ᾱ			
ceil(a)	ceil(a)	round up	ᾱ			
round(a)	round(a)	round towards zero	ᾱ			
a!	a!	factorial	a!, a must be nonnegative integer			
min(S)	min(S)	minimum of a set	\min_{a \in S}			
min(a in S) e(s)	min(a in S) e(s)	minimum over a set	\min_{a \in S} e(s)			
max(S)	max(S)	maximum of a set	\max_{a \in S}			
max(a in S) e(s)	max(a in S) e(s)	maximum over a set	\max_{a \in S} e(s)			
min(a,b,c,\ldots,n)	min(a,b,c,\ldots,n)	minimum of a list	\min(a,b,c,\ldots,n)			
max(a,b,c,\ldots,n)	max(a,b,c,\ldots,n)	maximum of a list	\max(a,b,c,\ldots,n)			
sum(a in S) e(s)	sum(a in S) e(s)	sum over a set	\sum_{s \in S} e(s)			
prod(a in S) e(s)	prod(a in S) e(s)	product over a set	\prod_{s \in S} e(s)			
card(S)	card(S)	cardinality of a set		S		
random(m,n)	random(m,n)	pseudo random number	\in [m,n], rational			
ord(A,n,c)	ord(A,n,c)	ordinal	c-th component of the n-th element of set A.			
length(s)	length(s)	length of a string	number of characters in s			
if a then b else c end	if a then b else c end	conditional	\{ b, if a = true \ c, if a = false \			

Table 2: Rational arithmetic functions

sqrt(a)	sqrt(a)	square root	\sqrt{a}
log(a)	log(a)	logarithm to base 10	\log_{10} a
ln(a)	ln(a)	natural logarithm	\ln a
exp(a)	exp(a)	exponential function	e^a

Table 3: Double precision functions

String expressions

A string is delimited by double quotation marks "", e.g. "Hallo Keiken". Two strings can be concatenated using the + operator, i.e., "Hallo " + "Keiken" gives "Hallo Keiken". The function substr(string, begin, length) can be used to extract parts of a string. begin is the first character to be used, and counting starts with zero at first character. If begin is negative, then counting starts at the end of the string. length
is the number of characters to extract starting at begin. The length of a string can be determined using the length function.

Boolean expressions
These evaluate either to true or to false. For numbers and strings the relational operators <, <=, ==, !=, >=, and > are defined. Combinations of Boolean expressions with and, or, and xor and negation with not are possible. The expression tuple in set-expression (explained in the next section) can be used to test set membership of a tuple. Boolean expressions can also be in the then or else part of an if expression.

Variant expressions
The following is either a numeric, string or boolean expression, depending on whether expression is a string, boolean, or numeric expression:

\[
\text{if boolean-expression then expression else expression end}
\]

The same is true for the \(\text{ord(set, tuple-number, component-number)} \) function which evaluates to a specific element of a set (details about sets are covered below).

4.2 Tuples and sets
A tuple is an ordered vector of fixed dimension where each component is either a number or a string. Sets consist of (a finite number of) tuples. Each tuple is unique within a set. All sets in ZIMPL are internally ordered, but there is no particular order. Sets are delimited by braces, \{ and \}, respectively. All tuples of a specific set have the same number of components. The type of the \(n \)-th component for all tuples of a set must be the same, i.e., they have to be either all numbers or all strings. The definition of a tuple is enclosed in angle brackets < and >, e.g. <1,2,"x">. The components are separated by commas. If tuples are one-dimensional, it is possible to omit the tuple delimiters in a list of elements, but in this case they must be omitted from all tuples in the definition, e.g. {1,2,3} is valid while {1,2,<3>} is not.

Sets can be defined with the set statement. It consists of the keyword set, the name of the set, an assignment operator :=, and a valid set expression. Sets are referenced by the use of a template tuple, consisting of placeholders which are replaced by the values of the components of the respective tuple. For example, a set \(S \) consisting of two-dimensional tuples could be referenced by \(<a,b> \text{ in } S \). If any of the placeholders are actual values, only those tuples matching these values will be extracted. For example, \(<1,b> \text{ in } S \) will only get those tuples whose first component is 1. Please note that if one of the placeholders is the name of an already defined parameter, set or variable, it will be substituted. This will result either in an error or an actual value.

Examples

\[
\text{set } A := \{ 1, 2, 3 \};
\]
\[
\text{set } B := \{ "hi", "ha", "ho" \};
\]
\[
\text{set } C := \{ <1,2,"x">, <6,5,"y">, <787,12.6,"oh" > \};
\]

For set expressions the functions and operators given in Table 4 are defined.

An example for the use of the if boolean-expression then set-expression else set-expression end can be found on page 10 together with the examples for indexed sets.

\[a \text{ xor } b := a \land \neg b \lor \neg a \land b \]
Examples

set D := A cross B;
set E := { 6 to 9 } union A without { 2, 3 };
set F := { 1 to 9 } * { 10 to 19 } * { "A", "B" };
set G := proj(F, <3,1>);
will give: { <"A",1>, <"A",2> ... <"B",9> }

Table 4: Set related functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>A*B, A cross B</td>
<td>cross product</td>
<td>{(x,y)</td>
</tr>
<tr>
<td>A+B, A union B</td>
<td>union</td>
<td>{x</td>
</tr>
<tr>
<td>union i> in I: S</td>
<td>ditto, of indexed sets</td>
<td>\bigcup_{i \in I} S_i</td>
</tr>
<tr>
<td>A inter B</td>
<td>intersection</td>
<td>{x</td>
</tr>
<tr>
<td>inter i> in I: S</td>
<td>ditto, of indexed sets</td>
<td>\bigcap_{i \in I} S_i</td>
</tr>
<tr>
<td>A\B, A-B, A without B</td>
<td>difference</td>
<td>{x</td>
</tr>
<tr>
<td>A symdiff B</td>
<td>symmetric difference</td>
<td>{x</td>
</tr>
<tr>
<td>{n..m by s}, generate, (default s = 1)</td>
<td>generate</td>
<td>{x</td>
</tr>
<tr>
<td>{n to m by s}</td>
<td>projection</td>
<td>{x</td>
</tr>
<tr>
<td>proj(A, t)</td>
<td>The new set will consist of n-tuples, with the i-th component being the e_i-th component of A.</td>
<td></td>
</tr>
<tr>
<td>argmin i> in I: e(i)</td>
<td>minimum argument</td>
<td>\text{argmin}_{i \in I} e(i)</td>
</tr>
<tr>
<td>argmin(n) i> in I: e(i)</td>
<td>n minimum arguments</td>
<td>The new set consists of those n elements of i for which e(i) was smallest. The result can be ambiguous.</td>
</tr>
<tr>
<td>argmax i> in I: e(i)</td>
<td>maximum argument</td>
<td>\text{argmax}_{i \in I} e(i)</td>
</tr>
<tr>
<td>argmax(n) i> in I: e(i)</td>
<td>n maximum arguments</td>
<td>The new set consists of those n elements of i for which e(i) was biggest. The result can be ambiguous.</td>
</tr>
<tr>
<td>if a then b else c end</td>
<td>conditional</td>
<td>{b, if a = true \n c, if a = false }</td>
</tr>
</tbody>
</table>

Conditional sets

It is possible to restrict a set to tuples that satisfy a Boolean expression. The expression given by the with clause is evaluated for each tuple in the set and only tuples for which the expression evaluates to true are included in the new set.
Examples

set F := { <i,j> in Q with i > j and i < 5 };
set A := { "a", "b", "c" };
set B := { 1, 2, 3 };
set V := { <a,2> in A*B with a == "a" or a == "b" };
will give: { <"a",2>, <"b",2> }
set W := argmin(3) <i,j> in B*B : i+j;
will give: { <1,1>, <1,2>, <2,1> }

Indexed sets

It is possible to index one set with another set resulting in a set of sets. Indexed sets are accessed by adding the index of the set in brackets [and], like S[I]. Table 5 lists the available functions. There are three possibilities how to assign to an indexed set:

- The assignment expression is a list of comma-separated pairs, consisting of a tuple from the index set and a set expression to assign.
- If an index tuple is given as part of the index, e.g. <i> in I, the assignment is evaluated for each value of the index tuple.
- By use of a function that returns an indexed set.

Examples

set I := { 1..3 };
set A[I] := <1> {"a","b"}, <2> {"c","e"}, <3> {"f"};
set B[i] in I] := { 3 * i };
set P[] := powerset(I);
set J := indexset(P);
set S[] := subsets(I, 2);
set T[] := subsets(I, 1, 2);
set K[i] in I] := if i mod 2 == 0 then { i } else { -i } end;
set U := union <i> in I : A[i];
set IN := inter <j> in J : P[j]; # empty!

\[
\begin{array}{ll}
\text{powerset}(A) & \text{generates all subsets of } A \\
\text{subsets}(A,n) & \text{generates all subsets of } A \\
\text{subsets}(A,n,m) & \text{generates all subsets of } A \\
\text{indexset}(A) & \text{the index set of } A \\
\end{array}
\]

\[\{X \mid X \subseteq A\} \quad \{X \mid X \subseteq A \land |X| = n\} \quad \{X \mid X \subseteq A \land n \leq |X| \leq m\} \quad \{1\ldots|A|\}\]

Table 5: Indexed set functions

4.3 Parameters

Parameters are the way to define constants within ZIMPL. They can be declared with or without an index set. Without index a parameter is just a single value which is either a number or a string. For indexed parameters there is one value for each member of the set. It is possible to declare a default value.
Parameters are declared in the following way: The keyword `param` is followed by the name of the parameter optionally followed by the index set in square brackets. Then, after the assignment operator, there is a list of pairs. The first element of each pair is a tuple from the index set, while the second element is the value of the parameter for this index.

Examples

```plaintext
set A := { 12 .. 30 };
set C := { <1,2,"x">, <6,5,"y">, <3,7,"z" };
param q := 5;
param u[A] := <13> 17, <17> 29, <23> 14 default 99;
param amin := min A;  # = 12
param umin := min <a> in A : u[a]; # = 14
param mmax := max <i> in { 1 .. 10 } : i mod 5;
param w[C] := <1,2,"x"> 1/2, <6,5,"y"> 2/3;
param x[<i> in { 1 .. 8 } with i mod 2 == 0] := 3 * i;
```

Assignments do not need to be complete. In the example, no value is given for index `<3,7,"z">` of parameter `w`. This is correct as long as it is never referenced.

Parameter tables

It is possible to initialize multi-dimensional indexed parameters from tables. This is especially useful for two-dimensional parameters. The data is put in a table structure with `|` signs on each margin. Then a headline with column indices has to be added, and one index for each row of the table is needed. The column index has to be one-dimensional, but the row index can be multi-dimensional. The complete index for the entry is built by appending the column index to the row index. The entries are separated by commas. Any valid expression is allowed here. As can be seen in the third example below, it is possible to add a list of entries after the table.

Examples

```plaintext
set I := { 1 .. 10 };
set J := { "a", "b", "c", "x", "y", "z" };

param h[I*J] := | "a", "c", "x", "z" |
                | 1| 12, 17, 99, 23 |
                | 3| 4, 3,-17, 66*5.5 |
                | 5| 2/3,-.4, 3, abs(-4) |
                | 9| 1, 2, 0, 3 | default -99;

param g[I*I*I] :=  | 1, 2, 3 |
                   | 1,3| 0, 0, 1 |
                   | 2,1| 1, 0, 1 |;

param k[I*I] :=  | 7, 8, 9 |
                 | 4| 89, 67, 55 |
                 | 5| 12, 13, 14 |, <1,2> 17, <3,4> 99;
```

The last example is equivalent to:

```plaintext
param k[I*I] := <4,7> 89, <4,8> 67, <4,9> 55, <5,7> 12,
               <5,8> 13, <5,9> 14, <1,2> 17, <3,4> 99;
```
4.4 Initializing sets and parameters from a file

It is possible to load the values for a set or a parameter from a file. The syntax is:

\[
\text{read } \text{filename as template } \{ \text{skip } n \} \{ \text{use } n \} \{ \text{match } s \} \{ \text{comment } s \}
\]

filename is the name of the file to read. template is a string with a template for the tuples to generate. Each input line from the file is split into fields. The splitting is done according to the following rules: All leading and trailing space and tab characters in the line are removed. Whenever a space, tab, comma, semicolon or colon is encountered a new field is started. Text that is enclosed in double quotes is not split and the quotes are always removed. When a field is split all space and tab characters around the splitting point are removed. If the split is due to a comma, semicolon or colon, each occurrence of these characters starts a new field.

Examples

All these lines have three fields:

Hallo;12;3
Moin 7 2
"Hallo, Peter"; "Nice to meet you" 77
,,2

For each component of the tuple, the number of the field to use for the value is given, followed by either \(n \) if the field should be interpreted as a number or \(s \) for a string. After the template, some optional modifiers can be given. The order does not matter. match \(s \) compares the regular expression \(s \) against the line read from the file. Only if the expression matches the line, it is processed further. POSIX extended regular expression syntax is used. comment \(s \) sets a list of characters that start comments in the file. Each line is ended when any of the comment characters is found. skip \(n \) instructs to skip the first \(n \) lines of the file. use \(n \) limits the number of lines to use to \(n \). When a file is read, empty lines, comment lines, and unmatched lines are skipped and not counted for the use and skip clauses.

Examples

set P := { read "nodes.txt" as "<1s>" };
nodes.txt:
 Hamburg → <"Hamburg">
 München → <"München">
 Berlin → <"Berlin">

set Q := { read "blabla.txt" as "<1s,5n,2n>" skip 1 use 2 }; blabla.txt:
 Name;Nr;X;Y;No → skip
 Hamburg;12;x;y;7 → <"Hamburg",7,12>
 Bremen;4;x;y;5 → <"Bremen",5,4>
 Berlin;2;x;y;8 → skip

param cost[P] := read "cost.txt" as "<1s> 2n" comment "#";
cost.txt:
 # Name Price → skip
 Hamburg 1000 → <"Hamburg"> 1000
 München 1200 → <"München"> 1200
Berlin 1400 → "Berlin"> 1400

param cost[Q] := read "haha.txt" as "<3s,1n,2n> 4s";

haha.txt:
1:2:ab:con1 → "ab",1,2> "con1"
2:3:bc:con2 → "bc",2,3> "con2"
4:5:de:con3 → "de",4,5> "con3"

As with table format input, it is possible to add a list of tuples or parameter entries after a read statement.

Examples

set A := { read "test.txt" as "<2n>", <5>, <6> };
param winniepoh[X] :=
read "values.txt" as "<1n,2n> 3n", <1,2> 17, <3,4> 29;

It is also possible to read a single value into a parameter. In this case, either the file should contain only a single line, or the read statement should be instructed by means of a use 1 parameter only to read a single line.

Examples

Read the fourth value in the fifth line
param n := read "huhu.dat" as "4n" skip 4 use 1;

If all values in a file should be read into a set, this is possible by use of the "<s+>" template for string values, and "<n+>" for numerical values. Note, that currently at most 65536 values are allowed in a single line.

Examples

Read all values into a set
set X := { read "stream.txt" as "<n+>" };

stream.txt:
1 2 3 7 9 5 6 23
63 37 88
4
87 27

X := { 1, 2, 3, 7, 9, 5, 6, 23, 63, 37, 88, 4, 87, 27 };

4.5 *sum*-expressions

Sums are stated in the form:

\[\sum \text{index do term} \]

It is possible to nest several sum instructions, but it is probably more convenient to simply merge the indices. The general form of index is:

\[\text{tuple in set with boolean-expression} \]

It is allowed to write a colon : instead of do and a vertical bar | instead of with. The number of components in the tuple and in the members of the set must match. The with part of an index is optional. The set can be any expression giving a set. Examples are given in the next section.
4.6 **forall-statements**

The general forms are:

```plaintext
forall index do term
```

It is possible to nest several forall instructions. The general form of `index` equals that of `sum`-expressions. Examples are given in the next section.

4.7 **Function definitions**

It is possible to define functions within ZIMPL. The value a function returns has to be either a number, a string, a boolean, or a set. The arguments of a function can only be numbers or strings, but within the function definition it is possible to access all otherwise declared sets and parameters.

The definition of a function has to start with `defnumb`, `defstrg`, `defbool`, or `defset`, depending on the return value. Next is the name of the function and a list of argument names put in parentheses. An assignment operator `:=` has to follow and a valid expression or set expression.

Examples

```plaintext
defnumb dist(a,b) := sqrt(a*a + b*b);
defstrg huehott(a) := if a < 0 then "hue" else "hott" end;
defbool wirklich(a,b) := a < b and a >= 10 or b < 5;
defset bigger(i) := { <j> in K with j > i };
```

4.8 **The do print and do check commands**

The `do` command is special. It has two possible incarnations: `print` and `check`. `print` will print to the standard output stream whatever numerical, string, Boolean or set expression, or tuple follows it. This can be used for example to check if a set has the expected members, or if some computation has the anticipated result. `check` always precedes a Boolean expression. If this expression does not evaluate to `true`, the program is aborted with an appropriate error message. This can be used to assert that specific conditions are met. It is possible to use a `forall` clause before a `print` or `check` statement. For string and numeric values, it is possible to give a comma-separated list to the `print` statement.

Examples

```plaintext
set I := { 1..10 };
do print I;
do print "Cardinality of I:" , card(I);
do forall <i> in I with i > 5 do print sqrt(i);
do forall <p> in P do check sum <p,i> in PI : 1 >= 1;
```

5 **Models**

In this section, we use the machinery developed up to now to formulate mathematical programs. Apart from the usual syntax to declare variables, objective functions and constraints there is special syntax available that permits the easy formulation of special constraints, such as special ordered sets, conditional constraints, and extended functions.
5.1 Variables

Like parameters, variables can be indexed. A variable has to be one out of three possible types: Continuous (called real), binary or integer. The default type is real. Variables may have lower and upper bounds. Defaults are zero as the lower and infinity as the upper bound. Binary variables are always bounded between zero and one. It is possible to compute the value of the lower or upper bounds depending on the index of the variable (see the last declaration in the example). Bounds can also be set to infinity and -infinity. Binary and integer variables can be declared implicit, i.e., the variable can be assumed to have an integral value in any optimal solution to the integer program, even if it is declared continuous. Use of implicit is only useful if used together with a solver that take advantage of this information. As of this writing, only SCIP [http://scip.zib.de] with linked in ZIMPL can do so. In all other cases, the variable is treated as a continuous variable. It is possible to specify initial values for integer variables by use of the startval keyword. Furthermore, the branching priority can be given using the priority keyword. Currently, these values are written to a CPLEX branching order file if the -r command line switch is given.

Examples

var x1;
var x2 binary;
var x3 integer >= -infinity # free variable
var y[A] real >= 2 <= 18;
var z[a,b> in C] integer
 >= a * 10 <= if b <= 3 then p[b] else infinity end;
var w implicit binary;
var t[k in K] integer >= 1 <= 3 * k startval 2 * k priority 50;

5.2 Objective

There must be at most one objective statement in a model. The objective can be either minimize or maximize. Following the keyword is a name, a colon : and then a linear term expressing the objective function.

If there is an objective offset, i.e., a constant value in the objective function, ZIMPL automatically generates an internal variable @ObjOffset set to one. This variable is put into the objective function with the appropriate coefficient.

Example

minimize cost: 12 * x1 -4.4 * x2 + 5
 + sum <a> in A : u[a] * y[a]
 + sum <a,b,c> in C with a in E and b > 3 : -a/2 * z[a,b,c];
maximize profit: sum <i> in I : c[i] * x[i];

5.3 Constraints

The general format for a constraint is:

subto name: term sense term

Alternatively, it is also possible to define ranged constraints which have the form:

3The reason for this is that there is no portable way to put an offset into the objective function in neither LP nor MPS-format.
subto name: expr sense term sense expr
name can be any name starting with a letter. term is defined as in the objective. sense is one of <=, >= and ==. In case of ranged constraints both senses have to be equal and may not be ==. expr is any valid expression that evaluates to a number.

Additional to linear constraints as in the objective it is also possible to state terms with higher degree for constraints.

Many constraints can be generated with one statement by the use of the forall instruction, as shown below.

Examples

subto time: 3 * x1 + 4 * x2 <= 7;
subto space: 50 >= sum <a> in A: u[a] * y[a] >= 5;
subto weird: forall <a> in A: sum <a,b,c> in C: z[a,b,c]==55;
subto c21: 6*(sum <i> in A: x[i]) + sum <j> in B: y[j]) >= 2;
subto c40: x[1] == a[1] + 2 * sum <i> in A do 2*a[i]*x[i]*3+4;
subto frown: forall <i,j> in X cross { 1 to 5 } without { <2,3> } do
 with i > 5 and j < 2 do
 sum <i,j,k> in X cross { 1 to 3 } cross Z do
 p[i] * q[j] * w[j,k] >= if i == 2 then 17 else 53 end;
subto nonlin: 3 * x * y * z + 6 <= x^3 + z * y^2 + 3;

Note that in the example i and j are set by the forall instruction. So they are fixed in all invocations of sum.

if in terms

Part of a constraint can be put into an if-then-else-end. In this particular case, the else part is mandatory and both parts need to include some variables in the term.

Examples

subto c2: sum <i> in I :
 if (i mod 2 == 0) then 3 * x[i] else -2 * y[i] end <= 3;

if in constraints

It is possible to put two variants of a constraint into an if-statement. A forall statement inside the result part of an if is also possible. The else part is optional.

Examples

subto c1: forall <i> in I do
 if (i mod 2 == 0) then 3 * x[i] >= 4
 else -2 * y[i] <= 3 end;

Combining constraints with and

It is possible to group constraints by concatenating them with and. This group will then always be processed together. This operator is particularly useful in combination with forall and if.
Examples

subto c1: forall <i> in I:
 if (i > 3)
 then if (i == 4)
 then z[1] + z[2] == i
 end and
 z[3] + z[4] == i and
 else
 if (i == 2)
 then z[1] + z[2] == i + 10
 end and
 z[3] + z[4] == i + 10 and
 end;

Constraint attributes

It is possible to specify special attributes for a constraint regarding how it should be handled later on.

scale Before the constraint is written to a file, it is scaled by 1/max|c| with c being the coefficients of the constraint.

separate Do not include the constraint in the initial LP, but separate it later on. The constraint need not to be checked for feasibility. When written to an LP file it will be written into a USER CUTS section, in SCIP separate will be set to true.

checkonly Do not include the constraint in the initial LP, but separate only to check for feasibility. When written to an LP file it will be written into a LAZY CUTS section, in SCIP check will be set to true.

indicator If vif (see below) is part of the constraint then it is modeled as an indicator constraint and not by a big-M formulation. If you use this attribute, you can no longer write MPS-format, as indicator variables are not supported by this format.

The attributes are given after the constraint, before the semi-colon and are separated by commas.

Examples

subto c1: 1000 * x + 0.3 * y <= 5, scale, checkonly;
subto c2: x + y + z == 7, separate;
subto c3: vif x == 1 then y == 7 end, indicator;

Special ordered sets

ZIMPL can be used to specify special ordered sets (sos) for an integer program. If a model contains any sos a sos file is written together with the lp or mps file. The general format of a special ordered set is:

sos name: [type1|type2] priority expr : term

name can be any name starting with a letter. sos use the same namespace as constraints. term is defined as in the objective. type1 or type2 indicate whether a type-1
or type-2 special ordered set is declared. The priority is optional and equal to the priority setting for variables. Many sos can be generated with one statement by the use of the forall instruction, as shown above.

Examples

sos s1: type1: 100 * x[1] + 200 * x[2] + 400 * x[3];
sos s2: type2 priority 100 : sum <i> in I: a[i] * x[i];
sos s3: forall <i> in I with i > 2:
 type1: (100 + i) * x[i] + i * x[i-1];

Extended constraints

ZIMPL can generate systems of constraints that mimic conditional constraints. The general syntax is as follows (note that the else part is optional):

\[
\text{vif boolean-constraint then constraint | else constraint | end}
\]

where boolean-constraint consists of a linear expression involving variables. All these variables have to be bounded integer or binary variables. It is not possible to use any continuous variables or integer variables with infinite bounds in a boolean-constraint. All comparison operators (\(<\), \(\leq\), \(==\), \(!=\), \(\geq\), \(>\)) are allowed. Also, the combination of several terms with and, or, and xor and negation with not is possible. The conditional constraints (those which follow after then or else) may include bounded continuous variables. Be aware that using this construct will lead to the generation of several additional constraints and variables.

Examples

var x[I] integer >= 0 <= 20;
 then sum <i> in I : y[i] <= 17
 else sum <k> in K : z[k] >= 5 end;
subto c3: forall <i> in I with i < max(I) :
 vif x[i] >= 2 then x[i + 1] <= 4 end;

Extended functions

It is possible to use special functions on terms with variables that will automatically be converted into a system of inequalities. The arguments of these functions have to be linear terms consisting of bounded integer or binary variables. At the moment only the function \(\text{vabs}(t)\) that computes the absolute value of the term \(t\) is implemented, but functions like the minimum or the maximum of two terms, or the sign of a term can be implemented in a similar manner. Again, using this construct will lead to the generation of several additional constraints and variables.

Examples

var x[I] integer >= -5 <= 5;
subto c1: vabs(sum <i> in I : x[i]) <= 15;
subto c2: vif vabs(x[1] + x[2]) > 2 then x[3] == 2 end;
6 Modeling examples

In this section we show some examples of well-known problems translated into ZIMPL format.

6.1 The diet problem

This is the first example in [Chv83, Chapter 1, page 3]. It is a classic so-called diet problem, see for example [Dan90] about its implications in practice.

Given a set of foods F and a set of nutrients N, we have a table π_{fn} of the amount of nutrient n in food f. Now Π_n defines how much intake of each nutrient is needed. Δ_f denotes for each food the maximum number of servings acceptable. Given prices c_f for each food, we have to find a selection of foods that obeys the restrictions and has minimal cost. An integer variable x_f is introduced for each $f \in F$ indicating the number of servings of food f. Integer variables are used, because only complete servings can be obtained, i.e., half an egg is not an option. The problem may be stated as:

$$\min \sum_{f \in F} c_f x_f \quad \text{subject to}$$

$$\sum_{f \in F} \pi_{fn} x_f \geq \Pi_n \quad \text{for all } n \in N$$

$$0 \leq x_f \leq \Delta_f \quad \text{for all } f \in F$$

$$x_f \in \mathbb{N}_0 \quad \text{for all } f \in F$$

This translates into ZIMPL as follows:

```zimpl
set Nutrients := { "Energy", "Protein", "Calcium" } ;
set Attr := Nutrients + { "Servings", "Price" } ;
param needed[Nutrients] := <"Energy"> 2000, <"Protein"> 55, <"Calcium"> 800 ;
param data[Food * Attr] :=
[ "Servings", "Energy", "Protein", "Calcium", "Price" |
| "Oatmeal" | 4 , 110 , 4 , 2 , 3 |
| "Chicken" | 3 , 205 , 32 , 12 , 24 |
| "Eggs" | 2 , 160 , 13 , 54 , 13 |
| "Milk" | 8 , 160 , 8 , 284 , 9 |
| "Pie" | 2 , 420 , 4 , 22 , 20 |
| "Pork" | 2 , 260 , 14 , 80 , 19 |
| # (kcal) (g) (mg) (cents) |

var x[f in Food] integer >= 0 <= data[f, "Servings"] ;

minimize cost : sum <f in Food> : data[f, "Price"] * x[f] ;

subject need : forall <n in Nutrients> do
sum <f in Food> : data[f, n] * x[f] >= needed[n] ;
```

The cheapest meal satisfying all requirements costs 97 cents and consists of four servings of oatmeal, five servings of milk and two servings of pie.
6.2 The traveling salesman problem

In this example, we show how to generate an exponential description of the symmetric traveling salesman problem (tsp) as given for example in [Sch03, Section 58.5].

Let \(G = (V,E) \) be a complete graph, with \(V \) being the set of cities and \(E \) being the set of links between the cities. Introducing binary variables \(x_{ij} \) for each \((i,j) \in E \) indicating if edge \((i,j) \) is part of the tour, the TSP can be written as:

\[
\min \sum_{(i,j) \in E} d_{ij} x_{ij} \quad \text{subject to}
\]

- \(\sum_{(i,j) \in \delta_v} x_{ij} = 2 \) for all \(v \in V \)
- \(\sum_{(i,j) \in E(U)} x_{ij} \leq |U| - 1 \) for all \(U \subseteq V, \emptyset \neq U \neq V \)
- \(x_{ij} \in \{0,1\} \) for all \((i,j) \in E \)

The data is read in from a file that gives the number of the city and the \(x \) and \(y \) coordinates. Distances between cities are assumed Euclidean. For example:

<table>
<thead>
<tr>
<th>#</th>
<th>City</th>
<th>X</th>
<th>Y</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stuttgart</td>
<td>4874</td>
<td>909</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Berlin</td>
<td>5251</td>
<td>1340</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Frankfurt</td>
<td>5011</td>
<td>864</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Leipzig</td>
<td>5133</td>
<td>1237</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Heidelberg</td>
<td>4941</td>
<td>867</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Karlsruhe</td>
<td>4901</td>
<td>840</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Hamburg</td>
<td>5566</td>
<td>998</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Bayreuth</td>
<td>4993</td>
<td>1159</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Trier</td>
<td>4974</td>
<td>668</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Hannover</td>
<td>5237</td>
<td>972</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Jena</td>
<td>5093</td>
<td>1158</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Essen</td>
<td>5145</td>
<td>701</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Dortmund</td>
<td>5145</td>
<td>728</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Bochum</td>
<td>5142</td>
<td>679</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Duisburg</td>
<td>5124</td>
<td>715</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Wuppertal</td>
<td>5124</td>
<td>715</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Stuttgart</td>
<td>4874</td>
<td>909</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Passau</td>
<td>4856</td>
<td>1344</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Augsburg</td>
<td>4833</td>
<td>1089</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Koblenz</td>
<td>5033</td>
<td>759</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Dortmund</td>
<td>5148</td>
<td>741</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Bochum</td>
<td>5145</td>
<td>728</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Duisburg</td>
<td>5142</td>
<td>679</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Wuppertal</td>
<td>5124</td>
<td>715</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Stuttgart</td>
<td>4874</td>
<td>909</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Passau</td>
<td>4856</td>
<td>1344</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Augsburg</td>
<td>4833</td>
<td>1089</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Koblenz</td>
<td>5033</td>
<td>759</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Dortmund</td>
<td>5148</td>
<td>741</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Bochum</td>
<td>5145</td>
<td>728</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Duisburg</td>
<td>5142</td>
<td>679</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Wuppertal</td>
<td>5124</td>
<td>715</td>
<td></td>
</tr>
</tbody>
</table>

The formulation in ZIMPL follows below. Please note that \(\mathcal{P}[] \) holds all subsets of the cities. As a result 19 cities is about as far as one can get with this approach. Information on how to solve much larger instances can be found on the CONCORDE website.

```zimpl
set V := {read "tsp.dat" as "<1s>" comment "#"};
set E := {<i,j> in V * V with i < j};
set \[\mathcal{P}\] := powerset(V);
set K := indexset(\[\mathcal{P}\]);

param px[V] := read "tsp.dat" as "<1s> 2n" comment "#";
param py[V] := read "tsp.dat" as "<1s> 3n" comment "#";

defnum dist (a,b) := sqrt((px[a]−px[b])^2 + (py[a]−py[b])^2);

var x[E] binary;
minimize cost: sum <i,j> in E : dist(i,j) * x[i,j];

subject to two_connected: forall <v> in V do
  (sum <v,j> in E : x[v,j]) + (sum <i,v> in E : x[i,v]) == 2;

subject to no_subtour:
  forall <k> in K with
```

4http://www.tsp.gatech.edu

20
card(P[k]) > 2 and card(P[k]) < card(V) − 2 do
 sum <i, j> in E with <i> in P[k] and <j> in P[k] : x[i, j] <= card(P[k]) − 1;

The resulting LP has 171 variables, 239,925 constraints, and 22,387,149 non-zero entries in the constraint matrix, giving an MPS-file size of 936 MB. CPLEX solves this to optimality without branching in less than a minute.

6.3 The capacitated facility location problem

Here we give a formulation of the capacitated facility location problem. It may also be considered as a kind of bin packing problem with packing costs and variable sized bins, or as a cutting stock problem with cutting costs.

Given a set of possible plants P to build, and a set of stores S with a certain demand δ_s that has to be satisfied, we have to decide which plant should serve which store. We have costs c_p for building plant p and c_{ps} for transporting the goods from plant p to store s. Each plant has only a limited capacity κ_p. We insist that each store is served by exactly one plant. Of course we are looking for the cheapest solution:

$$\min \sum_{p \in P} c_p z_p + \sum_{p \in P, s \in S} c_{ps} x_{ps}$$
subject to

$$\sum_{p \in P} x_{ps} = 1 \quad \text{for all } s \in S$$ \hspace{1cm} (2)

$$x_{ps} \leq z_p \quad \text{for all } s \in S, p \in P$$ \hspace{1cm} (3)

$$\sum_{s \in S} \delta_s x_{ps} \leq \kappa_p \quad \text{for all } p \in P$$ \hspace{1cm} (4)

$$x_{ps}, z_p \in \{0, 1\} \quad \text{for all } p \in P, s \in S$$

We use binary variables z_p which are set to one, if and only if plant p is to be built. Additionally, we have binary variables x_{ps} which are set to one if and only if plant p serves shop s. Equation (2) demands that each store is assigned to exactly one plant. Inequality (3) makes sure that a plant that serves a shop is built. Inequality (4) assures that the shops are served by a plant which does not exceed its capacity. Putting this into ZIMPL yields the program shown on the next page. The optimal solution for the instance described by the program is to build plants A and C. Stores 2, 3, and 4 are served by plant A and the others by plant C. The total cost is 1457.

\[^5\]Only 40 simplex iterations are needed to reach the optimal solution.
set STORES := { 1 .. 9 };
set PS := PLANTS * STORES;

How much does it cost to build a plant and what capacity
will it then have?
param building [PLANTS]: = "A", 500, "B", 600, "C", 700, "D", 800;
param capacity [PLANTS]: = "A", 40, "B", 55, "C", 73, "D", 90;

The demand for each store
param demand [STORES]: = <1> 10, <2> 14, <3> 17, <4> 8, <5> 9, <6> 12, <7> 11, <8> 15, <9> 16;

Transportation cost from each plant to each store
param transport [PS] :=
 | 1, 2, 3, 4, 5, 6, 7, 8, 9 |
"A"	55, 4, 17, 33, 47, 98, 19, 10, 6
"B"	42, 12, 4, 23, 16, 78, 47, 9, 82
"C"	17, 34, 65, 25, 7, 67, 45, 13, 54
"D"	60, 8, 79, 24, 28, 19, 62, 18, 45

var x[PS] binary; # Is plant p supplying store s ?
var z[PLANTS] binary; # Is plant p built ?

We want it cheap
minimize cost: sum <p> in PLANTS : building[p] * z[p] + sum <p,s> in PS : transport[p,s] * x[p,s];

Each store is supplied by exactly one plant
subto assign:
 forall <s> in STORES do
 sum <p> in PLANTS : x[p,s] == 1;

To be able to supply a store, a plant must be built
subto build:
 forall <p,s> in PS do
 x[p,s] <= z[p];

The plant must be able to meet the demands from all stores
that are assigned to it
subto limit:
 forall <p> in PLANTS do
 sum <s> in S : demand[s] * x[p,s] <= capacity[p];
6.4 The \(n \)-queens problem

The problem is to place \(n \) queens on a \(n \times n \) chessboard so that no two queens are on the same row, column or diagonal. The \(n \)-queens problem is a classic combinatorial search problem often used to test the performance of algorithms that solve satisfiability problems. Note though, that there are algorithms available which need linear time in practice, like, for example, those of [SG91]. We will show four different models for the problem and compare their performance.

The integer model

The first formulation uses one general integer variable for each row of the board. Each variable can assume the value of a column, i.e., we have \(n \) variables with bounds \(1 \ldots n \). Next, we use the `vabs` extended function to model an all different constraint on the variables (see constraint c1). This makes sure that no queen is located in the same column than any other queen. The second constraint (c2) is used to block all the diagonals of a queen by demanding that the absolute value of the row distance and the column distance of each pair of queens are different. We model \(a \neq b \) by \(\text{abs}(a - b) \geq 1 \).

Note that this formulation only works if a queen can be placed in each row, i.e., if the size of the board is at least \(4 \times 4 \).

```
param queens := 8;
set C := { 1 .. queens };
set P := { <i,j> in C x C with i < j };
var x[C] integer >= 1 <= queens;
subto c1: forall <i,j> in P do vabs(x[i] - x[j]) >= 1;
subto c2: forall <i,j> in P do vabs(vabs(x[i] - x[j]) - abs(i - j)) >= 1;
```

The following table shows the performance of the model. Since the problem is modeled as a pure satisfiability problem, the solution time depends only on how long it takes to find a feasible solution\(^6\). The columns titled \(\text{Vars} \), \(\text{Cons} \), and \(\text{NZ} \) denote the number of variables, constraints and non-zero entries in the constraint matrix of the generated integer program. \(\text{Nodes} \) lists the number of branch-and-bound nodes evaluated by the solver, and \(\text{time} \) gives the solution time in CPU seconds.

<table>
<thead>
<tr>
<th>Queens</th>
<th>Vars</th>
<th>Cons</th>
<th>NZ</th>
<th>Nodes</th>
<th>Time [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>344</td>
<td>392</td>
<td>951</td>
<td>1,324</td>
<td><1</td>
</tr>
<tr>
<td>12</td>
<td>804</td>
<td>924</td>
<td>2,243</td>
<td>122,394</td>
<td>120</td>
</tr>
<tr>
<td>16</td>
<td>1,456</td>
<td>1,680</td>
<td>4,079</td>
<td>>1 mill.</td>
<td>>1,700</td>
</tr>
</tbody>
</table>

As we can see, between 12 and 16 queens is the maximum instance size we can expect to solve with this model. Neither changing the CPLEX parameters to aggressive cut generation nor setting emphasis on integer feasibility improves the performance significantly.

\(^6\)Which is, in fact, rather random.
The binary models

Another approach to model the problem is to have one binary variable for each square of the board. The variable is one if and only if a queen is in this square and we maximize the number of queens on the board.

For each square we compute in advance which other squares are blocked if a queen is placed on this particular square. Then the extended vif constraint is used to set the variables of the blocked squares to zero if a queen is placed.

```
param columns := 8;
set C := { 1 .. columns };
set CxC := C * C;
set TABU[i,j] in CxC := { <m,n> in CxC with (m != i or n != j) and (m = i or n = j or abs(m - i) = abs(n - j)) };
var x[CxC] binary;
maximize queens: sum <i,j> in CxC : x[i,j];
subto c1: forall <i,j> in CxC do vif x[i,j] == 1 then sum <m,n> in TABU[i,j] : x[m,n] <= 0 end;
```

Using extended formulations can make the models more comprehensible. For example, replacing constraint c1 in line 13 with an equivalent one that does not use vif as shown below, leads to a formulation that is much harder to understand.

```
subto c2: forall <i,j> in CxC do
    card(TABU[i,j]) * x[i,j] + sum <m,n> in TABU[i,j] : x[m,n] <= card(TABU[i,j]);
```

After the application of the CPLEX presolve procedure both formulations result in identical integer programs. The performance of the model is shown in the following table. S indicates the CPLEX settings used: Either (D)efault, (C)uts[7] or (F)easibility[8].

<table>
<thead>
<tr>
<th>Queens</th>
<th>S</th>
<th>Vars</th>
<th>Cons</th>
<th>NZ</th>
<th>Root Node</th>
<th>Nodes</th>
<th>Time [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>D</td>
<td>384</td>
<td>448</td>
<td>2,352</td>
<td>13.4301</td>
<td>241</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>8.0000</td>
<td>0</td>
<td><1</td>
</tr>
<tr>
<td>12</td>
<td>D</td>
<td>864</td>
<td>1,008</td>
<td>7,208</td>
<td>23.4463</td>
<td>20,911</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>12.0000</td>
<td>0</td>
<td><1</td>
</tr>
<tr>
<td>16</td>
<td>D</td>
<td>1,536</td>
<td>1,792</td>
<td>16,224</td>
<td>35.1807</td>
<td>281,030</td>
<td>1,662</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>16.0000</td>
<td>54</td>
<td>8</td>
</tr>
<tr>
<td>24</td>
<td>C</td>
<td>3,456</td>
<td>4,032</td>
<td>51,856</td>
<td>24.0000</td>
<td>38</td>
<td>42</td>
</tr>
<tr>
<td>32</td>
<td>C</td>
<td>6,144</td>
<td>7,168</td>
<td>119,488</td>
<td>56.4756</td>
<td>>5,500</td>
<td>>2,000</td>
</tr>
</tbody>
</table>

This approach solves instances with more than 24 queens. The use of aggressive cut generation improves the upper bound on the objective function significantly, though it can be observed that for values of n larger than 24 CPLEX is not able to deduce the

[8]Feasibility: mip cuts all -1 and mip emph 1
trivial upper bound of n. If we use the following formulation instead of constraint $c2$, this changes:

\textbf{subto} \ c3: \forall <i,j> \ in \ C \times C \ do \\
\forall <m,n> \ in \ TABU[i,j] \ do \ x[i,j] + x[m,n] \leq 1;

As shown in the table below, the optimal upper bound on the objective function is always found in the root node. This leads to a similar situation as in the integer formulation, i.e., the solution time depends mainly on the time it needs to find the optimal solution. While reducing the number of branch-and-bound nodes evaluated, aggressive cut generation increases the total solution time.

With this approach instances, up to 96 queens can be solved. At this point, the integer program gets too large to be generated. Even though the CPLEX presolve routine is able to aggregate the constraints again, ZIMPL needs too much memory to generate the IP. The column labeled \textit{Pres. NZ} lists the number of non-zero entries after the presolve procedure.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
Queens & S & Vars & Cons & NZ & Pres. NZ & Root Node & Nodes & Time [s] \\
\hline
16 & D & 256 & 12,640 & 25,280 & 1,594 & 16.0 & 0 & <1 \\
32 & D & 1,024 & 105,152 & 210,304 & 6,060 & 32.0 & 58 & 5 \\
64 & D & 4,096 & 857,472 & 1,714,944 & 23,970 & 64.0 & 110 & 60 \\
64 & C & & & & 64.0 & 30 & 89 & \\
96 & D & 9,216 & 2,912,320 & 5,824,640 & 53,829 & 96.0 & 70 & 193 \\
96 & C & & & & 96.0 & 30 & 410 & \\
96 & F & & & & 96.0 & 69 & 66 & \\
\hline
\end{tabular}
\end{table}

Finally, we will try the following set packing formulation:

\textbf{subto} \ row: \forall i \ in \ C \ do \\
\textbf{sum} \ <i,j> \ in \ C \times C : x[i,j] \leq 1;

\textbf{subto} \ col: \forall j \ in \ C \ do \\
\textbf{sum} \ <i,j> \ in \ C \times C : x[i,j] \leq 1;

\textbf{subto} \ diag_row_do: \forall i \ in \ C \ do \\
\textbf{sum} \ <m,n> \ in \ C \times C \ with \ m = i = n - 1: x[m,n] \leq 1;

\textbf{subto} \ diag_row_up: \forall i \ in \ C \ do \\
\textbf{sum} \ <m,n> \ in \ C \times C \ with \ m = i = 1 - n: x[m,n] \leq 1;

\textbf{subto} \ diag_col_do: \forall j \ in \ C \ do \\
\textbf{sum} \ <m,n> \ in \ C \times C \ with \ m = 1 - n - j: x[m,n] \leq 1;

\textbf{subto} \ diag_col_up: \forall j \ in \ C \ do \\
\textbf{sum} \ <m,n> \ in \ C \times C \ with \ \text{card}(C) - m = n - j: x[m,n] \leq 1;

Here again, the upper bound on the objective function is always optimal. The size of the generated IP is even smaller than that of the former model after presolve. The results for different instances size are shown in the following table:

9For the 32 queens instance the optimal solution is found after 800 nodes, but the upper bound is still 56.1678.
In case of the 128 queens instance with default settings, a solution with 127 queens is found after 90 branch-and-bound nodes, but CPLEX was not able to find the optimal solution within an hour. From the performance of the Feasible setting, it can be presumed that generating cuts is not beneficial for this model.

<table>
<thead>
<tr>
<th>Queens</th>
<th>S</th>
<th>Vars</th>
<th>Cons</th>
<th>NZ</th>
<th>Root Node</th>
<th>Nodes</th>
<th>Time [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>D</td>
<td>4096</td>
<td>384</td>
<td>16512</td>
<td>64.0</td>
<td>0</td>
<td><1</td>
</tr>
<tr>
<td>96</td>
<td>D</td>
<td>9216</td>
<td>576</td>
<td>37056</td>
<td>96.0</td>
<td>1680</td>
<td>331</td>
</tr>
<tr>
<td>96</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>96.0</td>
<td>1200</td>
<td>338</td>
</tr>
<tr>
<td>96</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td>96.0</td>
<td>121</td>
<td>15</td>
</tr>
<tr>
<td>128</td>
<td>D</td>
<td>16384</td>
<td>768</td>
<td>65792</td>
<td>128.0</td>
<td>>7000</td>
<td>>3600</td>
</tr>
<tr>
<td>128</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td>128.0</td>
<td>309</td>
<td>90</td>
</tr>
</tbody>
</table>
7 Error messages

Here is a (hopefully) complete list of the incomprehensible error messages ZIMPL can produce:

101 Bad filename
 The name given with the -o option is either missing, a directory name, or starts with a dot.

102 File write error
 Some error occurred when writing to an output file. A description of the error follows on the next line. For the meaning consult your OS documentation.

103 Output format not supported, using LP format
 You tried to select another format than lp, mps, hum, rlp, or pip.

104 File open failed
 Some error occurred when trying to open a file for writing. A description of the error follows on the next line. For the meaning consult your OS documentation.

105 Duplicate constraint name “xxx”
 Two subto statements have the same name.

106 Empty LHS, constraint trivially violated
 One side of your constraint is empty and the other not equal to zero. Most frequently this happens, when a set to be summed up is empty.

107 Range must be \(l \leq x \leq u \), or \(u \geq x \geq l \)
 If you specify a range you must have the same comparison operators on both sides.

108 Empty Term with nonempty LHS/RHS, constraint trivially violated
 The middle of your constraint is empty and either the left- or right-hand side of the range is not zero. This most frequently happens, when a set to be summed up is empty.

109 LHS/RHS contradiction, constraint trivially violated
 The lower side of your range is bigger than the upper side, e.g., \(15 \leq x \leq 2 \).

110 Division by zero
 You tried to divide by zero. This is not a good idea.

111 Modulo by zero
 You tried to compute a number modulo zero. This does not work well.

112 Exponent value xxx is too big or not an integer
 It is only allowed to raise a number to the power of integers. Also trying to raise a number to the power of more than two billion is prohibited.

113 Factorial value xxx is too big or not an integer
 You can only compute the factorial of integers. Also computing the factorial of a number bigger then two billion is generally a bad idea. See also Error 115.

114 Negative factorial value
 To compute the factorial of a number it has to be positive. In case you need it for a negative number, remember that for all even numbers the outcome will be positive and for all odd number negative.

10The behavior of this operation could easily be implemented as for(;;) or in a more elaborate way as void f(){f();}.
115 **Timeout!**
You tried to compute a number bigger than $1000!$. See also the footnote to Error 112.

116 **Illegal value type in min: xxx only numbers are possible**
You tried to build the minimum of some strings.

117 **Illegal value type in max: xxx only numbers are possible**
You tried to build the maximum of some strings.

118 **Comparison of different types**
You tried to compare apples with oranges, i.e., numbers with strings. Note that the use of an undefined parameter can also lead to this message.

119 **xxx of sets with different dimension**
To apply Operation xxx (union, minus, intersection, symmetric difference) on two sets, both must have the same dimension tuples, i.e., the tuples must have the same number of components.

120 **Minus of incompatible sets**
To apply Operation xxx (union, minus, intersection, symmetric difference) on two sets, both must have tuples of the same type, i.e., the components of the tuples must have the same type (number, string).

121 **Negative exponent on variable**
The exponent to a variable was negative. This is not supported.

122 **“from” value xxx is too big or not an integer**
To generate a set, the “from” number must be an integer with an absolute value of less than two billion.

123 **“upto” value xxx is too big or not an integer**
To generate a set, the “upto” number must be an integer with an absolute value of less than two billion.

124 **“step” value xxx is too big or not an integer**
To generate a set, the “step” number must be an integer with an absolute value of less than two billion.

125 **Zero “step” value in range**
The given “step” value for the generation of a set is zero. So the “upto” value can never be reached.

126 **Illegal value type in tuple: xxx only numbers are possible**
The selection tuple in a call to the proj function can only contain numbers.

127 **Index value xxx in proj too big or not an integer**
The value given in a selection tuple of a proj function is not an integer or bigger than two billion.

128 **Illegal index xxx, set has only dimension yyy**
The index value given in a selection tuple is bigger than the dimension of the tuples in the set.

129 **Illegal element xxx for symbol**
The index tuple used in the initialization list of a index set, is not member of the index set of the set. E.g. set $A[\{1 \text{ to } 5\}] := \langle 1 \rangle, \langle 6 \rangle \{2\};$

130 **Values in parameter list missing, probably wrong read template**
Probably the template of a read statement looks like "\$<1n>\$" only having a tuple, instead of "\$<1n> 2n\$".
133 **Unknown symbol** xxx
A name was used that is not defined anywhere in scope.

134 **Illegal element** xxx **for symbol**
The index tuple given in the initialization is not member of the index set of the parameter.

135 **Index set for parameter** xxx **is empty**
The attempt was made to declare an indexed parameter with the empty set as index set. Most likely the index set has a `with` clause which has rejected all elements.

139 **Lower bound for integral var** xxx **truncated to** yyy **(warning)**
An integral variable can only have an integral bound. So the given non integral bound was adjusted.

140 **Upper bound for integral var** xxx **truncated to** yyy **(warning)**
An integral variable can only have an integral bound. So the given non integral bound was adjusted.

141 **Infeasible due to conflicting bounds for var** xxx
The upper bound given for a variable was smaller than the lower bound.

142 **Unknown index** xxx **for symbol** yyy
The index tuple given is not member of the index set of the symbol.

143 **Size for subsets** xxx **is too big or not an integer**
The cardinality for the subsets to generate must be given as an integer smaller than two billion.

144 **Tried to build subsets of empty set**
The set given to build the subsets of, was the empty set.

145 **Illegal size for subsets** xxx, **should be between 1 and** yyy
The cardinality for the subsets to generate must be between 1 and the cardinality of the base set.

146 **Tried to build powerset of empty set**
The set given to build the powerset of, was the empty set.

147 **use value** xxx **is too big or not an integer**
The use value must be given as an integer smaller than two billion.

148 **use value** xxx **is not positive**
Negative or zero values for the use parameter are not allowed.

149 **skip value** xxx **is too big or not an integer**
The skip value must be given as an integer smaller than two billion.

150 **skip value** xxx **is not positive**
Negative or zero values for the skip parameter are not allowed.

151 **Not a valid read template**
A read template must look something like "<1n,2n>". There have to be a < and a > in this order.

152 **Invalid read template syntax**
Apart from any delimiters like <, >, and commas a template must consists of number character pairs like 1n, 3s.

153 **Invalid field number** xxx
The field numbers in a template have to be between 1 and 255.
154 Invalid field type xxx
 The only possible field types are n and s.

155 Invalid read template, not enough fields
 There has to be at least one field inside the delimiters.

156 Not enough fields in data
 The template specified a field number that is higher than the actual number of field found in the data.

157 Not enough fields in data (value)
 The template specified a field number that is higher than the actual number of field found in the data. The error occurred after the index tuple in the value field.

159 Type error, expected xxx got yyy
 The type found was not the expected one, e.g. subtracting a string from a number would result in this message.

160 Comparison of elements with different types xxx / yyy
 Two elements from different tuples were compared and found to be of different types.

161 Line xxx: Unterminated string
 This line has an odd number of " characters. A String was started, but not ended.

162 Line xxx: Trailing "yyy" ignored (warning)
 Something was found after the last semicolon in the file.

163 Line xxx: Syntax Error
 A new statement was not started with one of the keywords: set, param, var, minimize, maximize, subto, or do.

164 Duplicate element xxx for set rejected (warning)
 An element was added to a set that was already in it.

165 Comparison of different dimension sets (warning)
 Two sets were compared, but have different dimension tuples. (This means they never had a chance to be equal, other than being empty sets.)

166 Duplicate element xxx for symbol yyy rejected (warning)
 An element that was already there was added to a symbol.

167 Comparison of different dimension tuples (warning)
 Two tuples with different dimensions were compared.

168 No program statements to execute
 No ZIMPL statements were found in the files loaded.

169 Execute must return void element
 This should not happen. If you encounter this error please email the .zpl file to mailto:koch@zib.de

170 Uninitialized local parameter xxx in call of define yyy
 A define was called and one of the arguments was a “name” (of a variable) for which no value was defined.

171 Wrong number of arguments (xxx instead of yyy) for call of define zzz
 A define was called with a different number of arguments than in its definition.
172 **Wrong number of entries (xxx) in table line, expected yyy entries**
Each line of a parameter initialization table must have exactly the same number of entries as the index (first) line of the table.

173 **Illegal type in element xxx for symbol**
A parameter can only have a single value type. Either numbers or strings. In the initialization both types were present.

174 **Numeric field xxx read as "yyy". This is not a number**
It was tried to read a field with an ‘n’ designation in the template, but what was read is not a valid number.

175 **Illegal syntax for command line define "xxx" – ignored (warning)**
A parameter definition using the command line -D flag, must have the form name=value. The name must be a legal identifier, i.e., it has to start with a letter and may consist only out of letters and numbers including the underscore.

176 **Empty LHS, in Boolean constraint (warning)**
The left hand side, i.e., the term with the variables, is empty.

177 **Boolean constraint not all integer**
No continuous (real) variables are allowed in a Boolean constraint.

178 **Conditional always true or false due to bounds (warning)**
All or part of a Boolean constraint are always either true or false, due to the bounds of variables.

179 **Conditional only possible on bounded constraints**
A Boolean constraint has at least one variable without finite bounds.

180 **Conditional constraint always true due to bounds (warning)**
The result part of a conditional constraint is always true anyway. This is due to the bounds of the variables involved.

181 **Empty LHS, not allowed in conditional constraint (warning)**
The result part of a conditional constraint may not be empty.

182 **Empty LHS, in variable vabs**
There are no variables in the argument to a vabs function. Either everything is zero, or just use abs.

183 **vabs term not all integer**
There are non integer variables in the argument to a vabs function. Due to numerical reasons continuous variables are not allowed as arguments to vabs.

184 **vabs term not bounded**
The term inside a vabs has at least one unbounded variable.

185 **Term in Boolean constraint not bounded**
The term inside a vif has at least one unbounded variable.

186 **Minimizing over empty set – zero assumed (warning)**
The index expression for the minimization was empty. The result used for this expression was zero.

187 **Maximizing over empty set – zero assumed (warning)**
The index expression for the maximization was empty. The result used for this expression was zero.
188 **Index tuple has wrong dimension**
The number of elements in an index tuple is different from the dimension of the tuples in the set that is indexed. This might occur, when the index tuple of an entry in a parameter initialization list has not the same dimension as the indexing set of the parameter. This might occur, when the index tuple of an entry in a set initialization list has not the same dimension as the indexing set of the set. If you use a powerset or subset instruction, the index set has to be one dimension.

189 **Tuple number xxx is too big or not an integer**
The tuple number must be given as an integer smaller than two billion.

190 **Component number xxx is too big or not an integer**
The component number must be given as an integer smaller than two billion.

191 **Tuple number xxx is not a valid value between 1..yyy**
The tuple number must be between one and the cardinality of the set.

192 **Component number xxx is not a valid value between 1..yyy**
The component number must be between one and the dimension of the set.

193 **Different dimension tuples in set initialization**
The tuples that should be part of the list have different dimension.

195 **Genuine empty set as index set** (warning)
The set of an index set is always the empty set.

197 **Empty index set for set**
The index set for a set is empty.

198 **Incompatible index tuple**
The index tuple given had fixed components. The type of such a component was not the same as the type of the same component of tuples from the set.

199 **Constants are not allowed in SOS declarations**
When declaring an SOS, weights are only allowed together with variables. A weight alone does not make sense.

200 **Weights are not unique for SOS xxx** (warning)
All weights assigned to variables in an special ordered set have to be unique.

201 **Invalid read template, only one field allowed**
When reading a single parameter value, the read template must consist of a single field specification.

202 **Indexing over empty set** (warning)
The indexing set turns out to be empty.

203 **Indexing tuple is fixed** (warning)
The indexing tuple of an index expression is completely fixed. As a result only this one element will be searched for.

204 **Random function parameter minimum= xxx >= maximum= yyy**
The second parameter to the function random has to be strictly greater than the first parameter.

205 **xxx excess entries for symbol yyy ignored** (warning)
When reading the data for symbol yyy there were xxx more entries in the file than indices for the symbol. The excess entries were ignored.
argmin/argmax over empty set (warning)
The index expression for the argmin or argmax was empty. The result is the empty set.

“size” value xxx is too big or not an integer
The size argument for an argmin or argmax function must be an integer with an absolute value of less than two billion.

“size” value xxx not >= 1
The size argument for an argmin or argmax function must be at least one, since it represents the maximum cardinality of the resulting set.

MIN of set with more than one dimension
The expressions min(A) is only allowed if the elements of set A consist of 1-tuples containing numbers.

MAX of set with more than one dimension
The expressions max(A) is only allowed if the elements of set A consist of 1-tuples containing numbers.

MIN of set containing non number elements
The expressions min(A) is only allowed if the elements of set A consist of 1-tuples containing numbers.

MAX of set containing non number elements
The expressions max(A) is only allowed if the elements of set A consist of 1-tuples containing numbers.

More than 65535 input fields in line xxx of yyy (warning)
Input data beyond field number 65535 in line xxx of file yyy are ignored. Insert some newlines into your data!

Wrong type of set elements – wrong read template?
Most likely you have tried read in a set from a stream using "n+" instead of "<n+>"] in the template.

Startvals violate constraint, ... (warning)
If the given startvals are summed up, they violate the constraint. Details about the sum of the LHS and the RHS are given in the message.

Redefinition of parameter xxx ignored
A parameter was declared a second time with the same name. The typical use would be to declare default values for a parameter in the ZIMPL file and override them by command-line defined.

begin value xxx in substr too big or not an integer
The begin argument for an substr function must be an integer with an absolute value of less than two billion.

length value xxx in substr too big or not an integer
The length argument for an substr function must be an integer with an absolute value of less than two billion.

length value xxx in substr is negative
The length argument for an substr function must be greater or equal to zero.

Illegal size for subsets xxx, should be between yyy and zzz
The cardinality of the subsets to generate must be between the given lower bound and the cardinality of the base set.
221 The objective function has to be linear
 Only objective functions with linear constraints are allowed.

222 Term inside a then or else constraint not linear
 The term inside a then or else is not linear.

223 Objective function xxx overwrites existing one (warning)
 Another objective function declaration has been encountered, superceeding the
 previous one.

301 variable priority has to be integral (warning)
 If branching priorities for variables are given, these have to be integral.

302 SOS priority has to be integral (warning)
 If SOS priorities are given, these have to be integral.

600 File format can only handle linear and quadratic constraints (warning)
 The chosen file format can currently only handle linear and quadratic constraints.
 Higher degree constraints were ignored.

700 log(): OS specific domain or range error message
 Function log was called with a zero or negative argument, or the argument was
 too small to be represented as a double.

701 sqrt(): OS specific domain error message
 Function sqrt was called with a negative argument.

702 ln(): OS specific domain or range error message
 Function ln was called with a zero or negative argument, or the argument was
 too small to be represented as a double.

800 parse error: expecting xxx (or yyy)
 Parsing error. What was found was not what was expected. The statement you
 entered is not valid.

801 Parser failed
 The parsing routine failed. This should not happen. If you encounter this error,
 please email the .zpl file to mailto:koch@zib.de

802 Regular expression error
 A regular expression given to the match parameter of a read statement was not
 valid. See error messages for details.

803 String too long xxx > yyy
 The program encountered a string which is larger than 1 GB.

900 Check failed!
 A check instruction did not evaluate to true.

References

 York, 1983.

 for Mathematical Programming*. Brooks/Cole—Thomson Learning, 2nd edi-

