
ZIMPL User Guide
(Zuse Institute Mathematical Programming Language)

Thorsten Koch

for Version 2.02
15. May 2004

Contents

1 Preface 3

2 Introduction 4

3 Invocation 5

4 Format 6
4.1 Expressions . 7
4.2 Sets . 8
4.3 Parameters . 11
4.4 Variables . 12
4.5 Objective . 12
4.6 Constraints . 13
4.7 Details on sum and forall . 13
4.8 Details on if in constraints . 13
4.9 Initializing sets and parameters from a file 14
4.10 Function Definitions . 15
4.11 Extended Constraints (experimental) 16
4.12 Extended Functions (experimental) 16
4.13 The do print and do check commands 17

5 Examples 18
5.1 Diet problem . 18
5.2 TSP . 20
5.3 Capacitated Facility Location Problem 21
5.4 n-Queens Problem . 23

1

ZIMPL

6 Error messages 24

2

ZIMPL

Abstract

ZIMPL is a little language to translate the mathematical model of a problem
into a linear or (mixed-)integer mathematical program expressed in LP or MPS

file format which can be read by a LP or MIP solver.

1 Preface

May the source be with you, Luke!

Most of the things in ZIMPL (and a lot more) can be found in the excellent book
about the modeling language AMPL from Robert Fourer, David N. Gay and Brian W.
Kernighan [FGK03]. But having the source code of a program has its advantages.
The possibility to run it regardless of architecture and operating system, the ability to
modify it to suite the needs, and not having to hassle with license managers may make
a much less powerful program the better choice. And so ZIMPL came into being.

By now ZIMPL has grown up and matured. It has been used in several industry
projects and university lectures, showing that it is able to cope with large scale models
and also with students. This would have not been possible without my early adopters
Armin Fügenschuh, Marc Pfetsch, Sascha Lukac, Daniel Junglas and Tobias Achter-
berg. Thanks for there comments and bug reports.

ZIMPL is licensed under the GNU general public license version 2. For more infor-
mation on free software see http://www.gnu.org. The latest version of ZIMPL

can be found at http://www.zib.de/koch/zimpl. If you find any bugs, please
send an email to mailto:koch@zib.de. But do not forget to include an example
that shows the problem. If somebody extends ZIMPL, I am interested in getting patches
to include them in the main distribution.

3

http://www.gnu.org
http://www.zib.de/koch/zimpl
mailto:koch@zib.de

ZIMPL

2 Introduction

A linear program (LP) might look like this:

min 2x + 3y
subject to x + y ≤ 6

x, y ≥ 0

The usual format to store the description of such a problem is MPS invented by IBM

[IBM97] long ago. Nearly all available LP and MIP solvers can read this format. While
MPS is a nice format to punch into a punch card and at least a reasonable format to read
for a computer it is quite unreadable for humans.

NAME ex1.mps
ROWS
N OBJECTIV
L c1
COLUMNS

x OBJECTIV 2
x c1 1
y OBJECTIV 3
y c1 1

RHS
RHS c1 6

ENDATA

Another possibility is the LP format [ILO02], which is more readable1 but is only
supported by a few solvers.

Minimize
cost: +2 x +3 y
Subject to
c1: +1 x +1 y <= 6
End

But since each coefficient of the matrix A must be stated explicitly it is also not a
desirable choice to develop a mathematical model.

Now, with ZIMPL it is possible to write this:

var x;
var y;
minimize cost: 2 * x + 3 * y;
subto c1: x + y <= 6;

1 The LP format has also some idiosyncratic restrictions. For example variables should not be named
e12 or the like. And it is not possible to specify ranged constraints.

4

ZIMPL

and have it automatically translated into MPS or LP format. While this looks not
much different from what is in the LP format, the difference can be seen, if we use
indexed variables. Here is an example. This is the LP

min 2x1 + 3x2 + 1.5x3

subject to
∑

3

i=1
xi ≤ 6

xi ≥ 0

And this is how to tell it to ZIMPL

set I := { 1 to 3 };
param c[I] := <1> 2, <2> 3, <3> 1.5;
var x[I] >= 0;
minimize value: sum <i> in I : c[i] * x[i];
subto cons: sum <i> in I : x[i] <= 6;

3 Invocation

To run ZIMPL on a model given in the file ex1.zpl type the command

zimpl ex1.zpl

The general case is zimpl [options] <input-files>.

It is possible to give more than one input file. They are read one after the other as
if they were all one big file. If any error occurs while processing, ZIMPL will print out
an error message and abort. In case everything goes well, the results will be written
into two or three files, depending on the options specified.

The first file is the problem generated from the model in either LP or MPS format
with extension .lp or .mps. The next one is the “table” file, which has the extension
.tbl. This file lists all variable and constraint names used in the model and their
corresponding names in the problem file.

The reason for this name translation is that the MPS format can only handle names
up to eight characters long. Also the the LP format restricts the length of names to 16
characters.

The third file is and optional CPLEX branching order file.

The following options are possible (only the first two are normally of interest):

5

ZIMPL

-t format Selects the output format. Can be either lp which is default,
or mps or hum which is only human readable.

-o name Sets the base-name for the output files.
Defaults to the name of the first input file stripped off its path
and extension.

-F filter The output is piped through a filter. A %s in the string is re-
placed by the output filename. For example -F "gzip -c
>%s.gz" would compress all the output files.

-n cform Select the format for the generation of constraint names. Can
be either cm which will number them 1 . . . n with a ‘c’ in front.
cn will use the name supplied in the subto statement and
number them 1 . . . n within the statement. cf will use the name
given with the subto, then a 1 . . . n number like in cm and
then append all the local variables from the forall statements.

-v 1..5 Set the verbosity level. 0 is quiet, 1 is default, 2 is verbose, 3
is chatter, and 5 is debug.

-D name=val Sets the parameter name to the specified value. This is equiv-
alent with having this line in the ZIMPL program: param
name:=val.

-b Enables bison debugging output.
-f Enables flex debugging output.
-h Prints a help message.
-m Writes a CPLEX mst Mip STart file.
-O Optimize the generated LP by doing some presolve analysis.
-r Writes a CPLEX ord branching order file.
-V Prints the version number.

A typical invocation is for example:

zimpl -o hardone -t mps data.zpl model.zpl

This reads the files data.zpl and model.zpl and produces hardone.mps and
hardone.tbl.

If MPS-output is specified for a maximization problem, the objective function
will be inverted.

4 Format

Each ZPL-file consists of six types of statements:

I Sets

I Parameters

I Variables

6

ZIMPL

I Objective

I Constraints

I Function definitions

Each statement ends with a semicolon ;. Everything from a number-sign # to the
end of the line is treated as a comment and is ignored.

If a line starts with the word include followed by a filename in double quotation
marks then this file is read instead of the line.

4.1 Expressions

ZIMPL works on its lowest level with two types of data: Strings and numbers.
Wherever a number or string is required, it is also possible to use a parameter of the

corresponding value type. Usually, expressions are allowed instead of just a number
or a string. The precedence of operators should be the usual one, but parenthesis can
always be used to specify the evaluation order explicitly. If in doubt use parenthesis.

Numeric expressions

A number in ZIMPL can be given in the usual format, e. g. as 2, -6.5 or 5.234e-12.
Numeric expressions consist of numbers, numeric valued parameters, and any of the
following operators and functions:

a∧b, a**b a to the power of b ab

a+b addition a + b
a-b subtraction a − b
a*b multiplication a · b
a/b division a/b
a mod b modulo a mod b
a div b integer division
abs(a) absolute value |a|
floor(a) round down bac
ceil(a) round up dae
a! factorial a!
min(S) minimum of a set mins∈S

max(S) maximum of a set maxs∈S

min(a,b,c,...,n) minimum of a list min(a, b, c, . . . , n)
max(a,b,c,...,n) maximum of a list max(a, b, c, . . . , n)
card(S) cardinality of a set |S|
ord(A,n,c) ordinal c-th component of the n-th

element of set A.
if a then b else c conditional

7

ZIMPL

The following functions are only computed with normal double precision floating
point arithmetic. So be careful:

sqrt(a) square root
√

a
log(a) logarithm to base 10 log

10
a

ln(a) natural logarithm ln a
exp(a) exponential function ea

String expressions

A string is delimited by double quotation marks ", e. g., "Hallo".

Variant expressions

The following is either a numeric or a string expression, depending if expression is a
string or a numeric expression.

if boolean-expression then expression else expression end.
The same is true for the ord (set,tuple-number,component-number) function, which

evaluates to a specific element of a set. Please note, that sets have no specific order.

Boolean expressions

These evaluate either to true or false. For numbers and strings the relational operators
<, <=, ==, ! =, >=, and > are defined. Combinations of boolean expressions with
and, or, and xor 2 and negation with not are possible. The expression tuple in
set-expression can be used to test set membership of a tuple.

4.2 Sets

Sets consist of tuples. The tuples in a sets are unordered, i. e., each tuple can only be
once in a set. Sets are delimited by braces, { and }, resp. Tuples consist of components.
The components are ordered. Each tuple of a specific set has the same number of
components. The components are either numbers or strings. The type of the n-th
component for all tuples of a set must be the same. A tuple starts and ends with <
and >, resp., e. g. <1,2,"x">. The components are separated by commas. If tuples
are one-dimensional, it is possible to omit the tuple delimiters in a list of elements, but
then they must be omitted from all tuples of the set, e. g. {1,2,3 }.

Sets can be defined with the set statement. It consists of the keyword set, the
name of the set, an assignment operator (:=) and a valid set expression.

Sets are referenced by use of an template tuple, consisting of placeholders that are
replaced by the value of the components of the respective tuple. For example a set S
consisting of two-dimensional tuples could be referenced by <a,b> in S. If any of

2
a ∧ b̄ ∨ ā ∧ b

8

ZIMPL

the placeholders are actual values, only those tuples will be extracted that match these
values. For example <1,b> in S will only get those tuples whose first component
is 1. Please note that if one of the placeholders is the name of an already defined
parameter, set or variable, it will be substituted. This will result either in an error or an
actual value.

Examples

set A := { 1, 2, 3 };
set B := { "hi", "ha", "ho" };
set C := { <1,2,"x">, <6,5,"y">, <787,12.6,"oh"> };

For set expressions these functions and operators are defined:

A*B,
A cross B Cross product {(x, y)|x ∈ A ∧ y ∈ B}
A+B,
A union B Union {x|x ∈ A ∨ x ∈ B}
A inter B Intersection {x|x ∈ A ∧ x ∈ B}
A\B, A-B,
A without B Difference {x|x ∈ A ∧ x 6∈ B}
A symdiff B Symmetric difference {x|(x ∈ A ∧ x 6∈ B) ∨ (x ∈

B ∧ x 6∈ A)}
{n..m},
{n to m by s} Generate, {x|x = n + is ≤ m, i ∈ N0}

(default s = 1)
proj(A, t) Projection The new set will consist of n-

tuples, with
t = (e1, . . . , en) the i-th component being the

ei-th component of A.
if a then
b else c Conditional

An example for the use of the if boolean-expression then set expression else
set expression end can be found below with the examples for indexed sets.

Examples

set D := A cross B;
set E := { 6 to 9 } union A without { <2>, <3> };
set F := { 1 to 9 } * { 10 to 19 } * { "A", "B" };
set G := proj(F, <3,1>)
will give: <"A",1>, <"A",2"> ... <"B",9>

9

ZIMPL

Conditional sets

It is possible to restrict a set to tuples that satisfy a boolean expression. The expression
given by the with clause is evaluated for each tuple in the set and only tuples for
which the expression evaluated to true are included in the new set.

Examples

set F := { <i,j> in Q with i > j and i < 5 };
set A := { "a", "b", "c" };
set B := { 1, 2, 3 };
set V := { <a,2> in A*B with a == "a" or a == "b" };
will give: <"a",2>, <"b",2>

Indexed sets

It is possible to index one set with another set. Here is a list of functions that use this:

powerset(A) Generates all subsets of A {X|X ⊆ A}
subset(A,n) Generates all subsets of A

with n elements {X|X ⊆ A ∧ |X| = n}
indexset(A) The index set of A {1 . . . |A|}

Indexed sets are accessed by adding the index of the set in brackets [and], like
S[7]. There are three possibilities how to assign to an indexed set:

I The assignment expression is a list of comma separated pairs, consisting of a
tuple from the index set and a set expression to assign.

I A set reference expression is given as index, then the assignment expression is
evaluated for each index tuple.

I By use of a function that returns an indexed set.

Examples

set I := { 1..3 };
set A[I] := <1> { "a", "b" },

<2> { "c", "e" }, <3> { "f" };
set B[<i> in I] := { 3 * i };
set P[] := powerset(I);
set J := indexset(P);
set S[] := subset(I, 2);
set K[<i> in I] := if i mod 2 == 0 then { i } else { -i } end;

10

ZIMPL

4.3 Parameters

Parameters can be declared with or without an indexing set. Without indexing the pa-
rameter is just one value, which is either a number or a string. For indexed parameters
there is one value for each member of the set. It is possible to declare a default value.

Parameters are declared in the following way: The keyword param is followed
by the name of the parameter optionally followed by the indexing set. Then after the
assignment sign comes a list of pairs. The first element of each pair is a tuple from the
index set, the second element is the value of the parameter for this index.

Examples

set A := { 12 .. 30 };
set C := { <1,2,"x">, <6,5,"y"> };
param q := 5;
param u[A] := <1> 17, <2> 29, <3> 12 default 99;
param w[C] := <1,2,"x"> 1/2, <6,5,"y"> 2/3;
param x[<i> in { 1 .. 8 } with i mod 2 == 0] := 3 * i;

In the example, no value is given for index <787,12.6,”oh”> of parameter w, that
is assignments need not to be complete. This is correct as long as it is never referenced.

Parameter tables

It is possible to initialize multi-dimensional indexed parameters from tables. This is
especially useful for two-dimensional parameters. The data is put in a table structure
with | signs on each margin. Then a head line with column indices has to be added,
and one index for each row of the table is needed. The column index has to be one-
dimensional, but the row index can be multi-dimensional. The complete index for the
entry is built by appending the column index to the row index. The value entries are
separated by commas. Any valid expression is allowed here. As can be seen in the
third example below, it is possible to add a list of entries after the table.

Examples

set I := { 1 .. 10 };
set J := { "a", "b", "c", "x", "y", "z" };

param h[I*J] := | "a", "c", "x", "z" |
1	12, 17, 99, 23
3	4, 3,-17, 66*5.5
5	2/3, -.4, 3, abs(-4)
9	1, 2, 0, 3

param g[I*I*I] := | 1, 2, 3 |

11

ZIMPL

1,1	0, 1, 0
1,2	1, 1, 1
1,3	0, 0, 1
2,1	1, 0, 1

param k[I*I] := | 7, 8, 9 |
|4| 89, 67, 55 |
|5| 12, 13, 14 |, <1,2> 17, <3,4> 99;

4.4 Variables

Like parameters, variables can be indexed. A variable has to be one out of three pos-
sible types: Continuous (called real), binary or integer. The default is real. Variables
may have lower and upper bounds. Defaults are zero as lower and infinity as upper
bound. Binary variables are always bounded between zero and one. It is possible to
compute the value of the lower or upper bounds depending on the index for the vari-
able (see last declaration in the example). Bounds can also be set to infinity and
-infinity.

Examples

var x1;
var x2 binary;
var y[A] real >= 2 <= 18;
var z[<a,b,c> in C] integer

>= a * 10
<= if b <= 3 then p[b] else 10 end;

Remember: if nothing is specified a lower bound of zero is assumed.

4.5 Objective

There must be at most one objective statement in a model. The objective can be either
minimize or maximize. Following the keyword is a name, a colon (:) and then a
term consisting of variables.

Example

minimize cost: 12 * x1 -4.4 * x2
+ sum <a> in A : u[a] * y[a]
+ sum <a,b,c> in C with a in E and b > 3 : -a/2 * z[a,b,c];

12

ZIMPL

4.6 Constraints

The general format for a constraint is subto name: term sense term.
Name can be any name starting with a letter. The term is defined as in the objective.
Sense is one of <=, >= and ==. Many constraints can be generated with one statement
by the use of the forall instruction, see below.

Examples

subto time : 3 * x1 + 4 * x2 <= 7;
subto space: sum <a> in A : 2 * u[a] * y[a] >= 50;
subto weird: forall <a> in A :

sum <a,b,c> in C : z[a,b,c] == 55;
subto c21: 6 * (sum <i> in A : x[i]

+ sum <j> in B : y[j]) >= 2;
subto c40: x[1] == a[1] +

2 * sum <i> in A do 2*a[i]*x[i]*3 + 4;

4.7 Details on sum and forall

The general forms are
forall index do term and sum index do term.

It is possible to nest several forall instructions. The general form of index is
tuple in set with boolean-expression.

It is allowed to write a colon (:) instead of do and a vertical bar (|) instead of
with. The number of components in the tuple and in the components of the members
of the set must match. The with part of an index is optional. The set can be any
expression giving a set.

Examples

forall <i,j> in X cross { 1 to 5 } without { <2,3> }
with i > 5 and j < 2 do

sum <i,j,k> in X cross { 1 to 3 } cross Z do
p[i] * q[j] * w[j,k] >= if i == 2 then 17 else 53;

Note that in the example i and j are set by the forall instruction. So they are
fixed for all invocations of sum.

4.8 Details on if in constraints

It is possible to put two variants of a constraint into an if-statement. The same applies
for terms. It is also possible to have a forall statement inside the result part of an
if.

13

ZIMPL

Examples

subto c1: forall <i> in I do
if (i mod 2 == 0) then 3 * x[i] >= 4

else -2 * y[i] <= 3 end;
subto c2: sum <i> in I :

if (i mod 2 == 0) then 3 * x[i] else -2 * y[i] end <= 3;

4.9 Initializing sets and parameters from a file

It is possible to load the values for a set or a parameter from a file. The syntax is

read filename as template [skip n] [use n] [fs s] [comment s]

filename is the name of the file to read.
template is a string with a template for the tuples to generate. Each input line

from the file is split into fields. The splitting is done according to the following rules:
Whenever a space, tab, comma, semicolon or double colon is encountered a new field
is started. Text that is enclosed in double quotes is not split, the quotes are always
removed. When a field is split all space and tab characters around the splitting are
removed. If the split is due to a comma, semicolon or double colon, each occurrence
of these characters starts a new field.

Examples

All these lines have three fields:

Hallo;12;3
Moin 7 2
"Hallo, Peter"; "Nice to meet you" 77
,,2

For each component of the tuple, the number of the field to use for the value is
given, followed by either an n if the field should be interpreted as a number or s for a
string. Have a look at the example, it is quite obvious how it works. After the template
some optional modifiers can be given. The order does not matter.

skip n instructs to skip the first n lines of the file.
use n limits the number of lines to use to n.
comment s sets a list of characters that start comments in the file. Each line is

ended when any of the comment characters is found.
When a file is read, empty lines are skipped and not counted for the use clause.

They are counted for the skip clause.

Examples

set P := { read "nodes.txt" as "<1s>" };

14

ZIMPL

nodes.txt:
Hamburg -> <"Hamburg">
München -> <"München">
Berlin -> <"Berlin">

set Q := { read "blabla.txt" as "<1s,5n,2n>" skip 1 use 2 };

blabla.txt:
Name;Nr;X;Y;No -> skip
Hamburg;12;x;y;7 -> <"Hamburg",7,12>
Bremen;4;x;y;5 -> <"Bremen,5,4>
Berlin;2;x;y;8 -> skip

param cost[P] := read "cost.txt" as "<1s> 2n" comment "#";

cost.txt:
Name Price -> skip
Hamburg 1000 -> <"Hamburg"> 1000
München 1200 -> <"München"> 1200
Berlin 1400 -> <"Berlin"> 1400

param cost[Q] := read "haha.txt" as "<3s,1n,2n> 4s";

haha.txt:
1:2:ab:con1 -> <"ab",1,2> "con1"
2:3:bc:con2 -> <"bc",2,3> "con1"
4:5:de:con3 -> <"de",4,5> "con1"

As with table format input, it is possible to add a list of tuples or parameter entries
after a read statement.

Examples

set A := { read "test.txt" as "<2n>", <5>, <6> };
param winniepoh[X] :=

read "values.txt" as "<1n,2n> 3n", <1,2> 17, <3,4> 29;

4.10 Function Definitions

It is possible to define functions within ZIMPL. The value a function returns has to be
either a number, a string or a set. The arguments of a function can only be numbers or
strings, but within the function definition it is possible to access all otherwise declared
sets, parameters and variables.

The definition of a function has to start with defnumb, defstrg or defset,
depending on the return value. Then follows the name of the function and a list of

15

ZIMPL

argument names put in parenthesis.
After this comes an assignment operator (:=) and a valid expression or set expres-

sion.

Examples

defnumb dist(a,b) := a*a + b*b;
defstrg huehott(a) := if a < 0 then "hue" else "hott" end;
defset bigger(i) := { <j> in K with j > i };

4.11 Extended Constraints (experimental)

ZIMPL has the possibility to generate systems of constraints that mimic conditional
constraints. The general syntax is as follows, note that the else part is optional:

vif boolean-constraint then constraint [else constraint] end

where boolean-constraint consists of linear expression involving variables. All
these variables have to be bounded integer or binary variables. It is not possible to
use any continuous variables or integer variables with infinite bounds in a boolean-
constraint. All comparison operators (<, ≤, ==, !=, ≥, >) are allowed. Also com-
bination of several terms with and, or, and xor and negation with not is possible.
The conditional constraints (those which follow after then or else, may include
bounded continuous variables.

Be aware that using this construct will lead to the generation of several
additional constraints and variables.

Examples

var x[i] integer >= 0 <= 20;

subto c1: vif 3 * x[1] + x[2] != 7
then sum <i> in I : y[i] <= 17
else sum <k> in K : z[k] >= 5 end;

subto c2: vif x[1] == 1 and x[2] > 5 then x[3] == 7 end;

subto c3: forall <i> in I :
vif x[i] >= 2 then x[i + 1] <= 4 end;

4.12 Extended Functions (experimental)

It is possible to use special functions on terms with variables that will automatically
converted to a system of inequalities. The arguments of these functions have to be
linear terms consisting of bounded integer or binary variables.

16

ZIMPL

The following functions are defined:

vabs(t) Absolute value |t|

Be aware that using this construct will lead to the generation of several
additional constraints and variables.

Examples

var x[i] integer >= -5 <= 5;

subto c1: vabs(x[1]) >= 5;
subto c2: vabs(sum <i> in I : x[i]) <= 15;
subto c2: vif vabs(x[1] + x[2]) > 2 then x[3] == 7 end;

4.13 The do print and do check commands

The do command is special. It has two possible incarnations:
print and check. print will print to the standard output stream whatever

numerical, string, Boolean or set expression, or tuple follows it. This can be used for
example to check if a set has the expected members, or if some computation has the
anticipated result.

check always precedes a Boolean expression. If this expression does not evalu-
ated to true, the program is aborted with an appropriate error message. This can be
used to assert that specific conditions are met.

It is possible to use a forall clause before a print oder check statement.

Examples

set I := { 1..10 };

do print I;
do forall <i> in I with i > 5 do print sqrt(i);

do forall <p> in P do check sum <p,i> in PI : 1 >= 1;

17

ZIMPL

5 Examples

In this section we will show examples how to translate a problem into ZIMPL format.

5.1 Diet problem

This is the first example in [Chv83, Chapter 1, page 3]. It is a classic so-called diet-
problem, see for example [Dan90] about the practicle implications.

Given a set of foods F and a set of nutrients N , we have a table πfn of the amount
of nutrient n in food f . Now Πn defines how much intake of each nutriment is needed.
And ∆f describes the maximum number of servings of each food.

Now given prices cf for each food, we have to find a selection of foods that obeys
the restrictions and has minimal cost.

min
f∈F,n∈N

cfnxfn subject to (1)
∑

f∈F

πfxfn ≥ Πn ∀n ∈ N (2)

0 ≤ xfn ≤ ∆f ∀f ∈ F, n ∈ N (3)

xfn ∈ N (4)

As (4) implies, only complete servings can be obtained. Half an egg is not an
option. Now translating this to ZIMPL looks as follows:

set Food := {"Oatmeal","Chicken","Eggs","Milk","Pie","Pork"};
set Nutrients := { "Energy", "Protein", "Calcium" };
set Attr := Nutrients + { "Servings", "Price" };

param needed[Nutrients] :=
<"Energy"> 2000, <"Protein"> 55, <"Calcium"> 800;

param data[Food * Attr] :=
|"Servings","Energy","Protein","Calcium","Price"|

"Oatmeal"	4 , 110 , 4 , 2 , 3
"Chicken"	3 , 205 , 32 , 12 , 24
"Eggs"	2 , 160 , 13 , 54 , 13
"Milk"	8 , 160 , 8 , 284 , 9
"Pie"	2 , 420 , 4 , 22 , 20
"Pork"	2 , 260 , 14 , 80 , 19
(kcal) (g) (mg) (cents)
var x[<f> in Food] integer >= 0 <= data[f, "Servings"];

minimize cost: sum <f> in Food : data[f, "Price"] * x[f];

subto need :

18

ZIMPL

forall <n> in Nutrients do
sum <f> in Food : data[f, n] * x[f] >= needed[n];

19

ZIMPL

5.2 TSP

In this example we show how to generate an exponential description of the Traveling
Salesmen Problem as given for example in [Sch03, Section 58.5]. The data is read in
from a file that gives the number of the city and the x and y coordinate. Distances
between cities are geometric. A suitable data file would look like this:

#City x y
"Sylt" 1 1
"Flensburg" 3 1
"Neumünster" 2 2
"Husum" 1 3
"Schleswig" 3 3
"Ausacker" 2 4

The formulation in ZIMPL follows below. Please note that P[] holds all subsets
of the cities. So don’t try to solve a 52 city TSP this way. It won’t work.

set V := { read "tsp.dat" as "<1s>" comment "#" };
set E := { <i,j> in V * V with i < j };
set P[] := powerset(V);
set K := indexset(P);

param px[V] := read "tsp.dat" as "<1s> 2n" comment "#";
param py[V] := read "tsp.dat" as "<1s> 3n" comment "#";

defnumb dist(a,b) := sqrt((px[a]-px[b])ˆ2 + (py[a]-py[b])ˆ2);

var x[E] binary;

minimize cost: sum <i,j> in E : dist(i,j) * x[i, j];

subto two_connected:
forall <v> in V do

(sum <v,j> in E : x[v,j])
+ (sum <i,v> in E : x[i,v]) == 2;

subto no_subtour:
forall <k> in K with

card(P[k]) > 2 and card(P[k]) < card(V) - 2 do
sum <i,j> in E with <i> in P[k] and <j> in P[k] : x[i,j]
<= card(P[k]) - 1;

20

ZIMPL

5.3 Capacitated Facility Location Problem

Here we have a formulation for the Capacitated Facility Location Problem. Of course
this is also kind of a bin packing problem with packing costs and variable sized bins,
or a cutting stock problem with cutting costs.

Given a set of possible plants P to built, and a set of stores S with a certain demand
δs that has to be satisfied, we have to decide which plant should serve which store. We
have costs cp for building plant p and cps for transporting the goods from plant p to
store s. Each plant has only a limited capacity κp. And we insist that each store is
served by exactly one plant. Of course we are looking for the cheapest solution:

min
p∈P,s∈S

cp + cps subject to (5)
∑

p∈P

xps = 1 ∀s ∈ S (6)

xps ≤ zs ∀s ∈ S, p ∈ P (7)
∑

s∈S

δsxps ≤ κp ∀p ∈ P (8)

xps, zp ∈ {0, 1} (9)

We have binary variables zp, which are set to one, iff plant p is to be build. And we
have binary variables xps, which are set to one iff plant p serves shop s. Equation (6)
demands that each store is assigned to exactly one plant. Equation (7) makes sure that
a plant that serves a shop is built. And Equation (8) restricts the shops that are served
by a plant to the plants capacity. Putting this into ZIMPL yields:

set PLANTS := { "A", "B", "C", "D" };
set STORES := { 1 .. 9 };
set PS := PLANTS * STORES;

How much does it cost to build a plant and what capacity
will it then have?
param building[PLANTS]:= <"A">500,<"B">600,<"C">700,<"D">800;
param capacity[PLANTS]:= <"A"> 40,<"B"> 55,<"C"> 73,<"D"> 90;

Here is the demand of each store
param demand [STORES]:= <1> 10,<2> 14,<3> 17,<4> 8,<5> 9,

<6> 12,<7> 11,<8> 15,<9> 16;

Transportation cost from each plant to each store
param transport[PS] :=

| 1, 2, 3, 4, 5, 6, 7, 8, 9 |
|"A"| 55, 4, 17, 33, 47, 98, 19, 10, 6 |
|"B"| 42, 12, 4, 23, 16, 78, 47, 9, 82 |

21

ZIMPL

|"C"| 17, 34, 65, 25, 7, 67, 45, 13, 54 |
|"D"| 60, 8, 79, 24, 28, 19, 62, 18, 45 |;

var x[PS] binary; # Is plant p suppling store s ?
var z[PLANTS] binary; # Is plant p build ?

We want it cheap
minimize cost: sum <p> in PLANTS : building[p] * z[p]

+ sum <p,s> in PS : transport[p,s] * x[p,s];

Each store is supplied by exactly one plant
subto assign:
forall <s> in STORES : sum <p> in PLANTS : x[p,s] == 1;

To be able to supply a store, a plant must be build
subto build: forall <p,s> in PS : x[p,s] <= z[p];

The plant must be able to meet the demands from all stores
that are connected to it
subto limit: forall <p> in PLANTS :

sum <s> in S : demand[s] * x[p,s] <= capacity[p];

The optimal solution in this case is to build plants A and C. Stores 2, 3, and 4 are
served by plant A, the rest by plant C. Total cost would be 1457.

22

ZIMPL

5.4 n-Queens Problem

We now show two formulations of the n-Queens problems using extended constraints
and functions.

The first formulation uses one general integer variable for each row of the board.
Each variable can take the value of a column. So we have n variables with bounds
1 . . . n. Next we use the vabs extended function to model an all different constraint
on the variables (see constraint c1). This makes sure that no queen is located on the
same column than any other queen. The second constraint (c2) is used to block all the
diagonals of a queen. This is done by demanding that the absolute row and the column
distance of each pair of queens is different. We model a 6= b by abs(a − b) ≥ 1.

Note that this formulation only works if a queen can be placed in each row,i. e. the
board size has to be at least 4 × 4.

param queens := 8;

set I := { 1 .. queens };
set P := { <i,j> in I * I with i < j };

var x[I] integer >= 1 <= queens;

subto c1: forall <i,j> in P do vabs(x[i] - x[j]) >= 1;
subto c2: forall <i,j> in P do

vabs(vabs(x[i] - x[j]) - abs(i - j)) >= 1;

Here we do the same with one binary variable for each field of the board. The
variable is one iff a queen is on this field. We compute in advance which other fields
are blocked if a queen is placed on a particular field. Then we use the extended vif
constraint to set the variables of the blocked fields to zero if a queens is placed.

param columns := 8;

set I := { 1 .. columns };
set IxI := I * I;

set TABU[<i,j> in IxI] := { <m,n> in IxI with
(m != i or n != j) and
(m == i or n == j or abs(m - i) == abs(n - j)) };

var x[IxI] binary;

maximize queens: sum <i,j> in IxI : x[i,j];

subto c1: forall <i,j> in IxI do
vif x[i,j] == 1 then

sum <m,n> in TABU[i,j] : x[m,n] <= 0 end;

23

ZIMPL

6 Error messages

Here is a complete list of the incomprehensible error messages ZIMPL can produce:

101 Bad filename
The name given with the -o option is either missing, a directory name, or starts
with a dot.

102 File write error
Some error occurred when writing to an output file. A description of the error
follows on the next line. For the meaning consult your OS documentation.

103 Output format not supported, using LP format
You tried to select another format then lp, mps, or hum.

104 File open failed
Some error occurred when trying to open a file for writing. A description of the
error follows on the next line. For the meaning consult your OS documentation.

105 Duplicate constraint name “xxx”
Two subto statements have the same name.

106 Empty LHS, constraint trivially violated
One side of your constraint is empty and the other not equal to zero. Most
frequently this happens, when a set to be summed up is empty.

107 Range must be l ≤ x ≤ u, or u ≥ x ≥ l
If you specify a range you must have the same comparison operators on both
sides.

108 Empty Term with nonempty LHS/RHS, constraint trivially violated
The middle of your constraint is empty and either the left- or right-hand side of
the range is not zero. This most frequently happens, when a set to be summed
up is empty.

109 LHS/RHS contradiction, constraint trivially violated
The lower side of your range is bigger than the upper side, e.g. 15 ≤ x ≤ 2.

110 Division by zero
You tried to divide by zero. This is not a good idea.

111 Modulo by zero
You tried to compute a number modulo zero. This does not work well.

24

ZIMPL

112 Exponent value xxx is too big or not an integer
It is only allowed to raise a number to the power of integers. Also trying to raise
a number to the power of more than two billion is prohibited.3

113 Factorial value xxx is too big or not an integer
You can only compute the factorial of integers. Also computing the factorial of
a number bigger then two billion is generally a bad idea. See also Error 115.

114 Negative factorial value
To compute the factorial of a number it has to be positive. In case you need it
for a negative number, remember that for all even numbers the outcome will be
positive and for all odd number negative.

115 Timeout!
You tried to compute a number bigger than 1000!. See also the footnote to Error
112.

116 Illegal value type in min: xxx only numbers are possible
You tried to build the minimum of some strings.

117 Illegal value type in max: xxx only numbers are possible
You tried to build the maximum of some strings.

118 Comparison of different types
You tried to compare apples with oranges, i.e, numbers with strings. Note that
the use of an undefined parameter could also lead to this message.

119 Union of incompatible sets
To unite two sets, both must have the same dimension tuples,i. e. the tuples must
have the same number of components.

120 Minus of incompatible sets
To subtract two sets, both must have the same dimension tuples.

121 Intersection of incompatible sets
To intersect two sets, both must have the same dimension tuples.

122 Symmetric Difference of incompatible sets
Two build the symmetric difference of two sets, both must have the same dimen-
sion tuples.

123 “from” value xxx in range too big or not an integer
To generate a set, the “from” number must be an integer with an absolute value
of less than two billion.

3The behavior of this operation could easily be implemented as for(;;) or more elaborate as
void f(){f();}.

25

ZIMPL

124 “upto” value xxx in range too big or not an integer
To generate a set, the “upto” number must be an integer with an absolute value
of less than two billion.

125 “step” value xxx in range too big or not an integer
To generate a set, the “step” number must be an integer with an absolute value
of less than two billion.

126 Zero “step” value in range
The given “step” value for the generation of a set is zero. So the “upto” value
can never be reached.

127 Illegal value type in tuple: xxx only numbers are possible
The selection tuple in a call to the proj function can only contain numbers.

128 Index value xxx in proj too big or not an integer
The value given in a selection tuple of a proj function is not an integer or bigger
than two billion.

129 Illegal index xxx, set has only dimension yyy
The index value given in a selection tuple is bigger than the dimension of the
tuples in the set.

131 Illegal element xxx for symbol
The index tuple used in the initialization list of a index set, is not member of the
index set of the set. E.g, set A[{ 1 to 5 }] := <1> { 1 }, <6>
{ 2 };

132 Values in parameter list missing, probably wrong read template
Probably the template of a read statement looks like "<1n>" only having a
tuple, instead of "<1n> 2n".

133 Unknown local symbol xxx
A (local) symbol was used, that is not defined anywhere in scope.

134 Illegal element xxx for symbol
The index tuple given in the initialization is not member of the index set of the
parameter.

135 Index set for parameter xxx is empty
The attempt was made to declare an indexed parameter with the empty set as
index set. Most likely the index set has a with clause which has rejected all
elements.

136 Lower bound for var xxx set to infinity – ignored (warning)
In the ZIMPL code something like ≥ infinity must have appeared. This
makes no sense and is therefore ignored.

26

ZIMPL

137 Upper bound for var xxx set to -infinity – ignored (warning)
In the ZIMPL code something like ≤ -infinity must have appeared. This
makes no sense and is therefore ignored.

138 Priority/Startval for continuous var xxx ignored (warning)
There has been set a priority or a starting value for a continuous (real) variable.
This is not possible and therefore ignored.

139 Lower bound for integral var xxx truncated to yyy (warning)
An integral variable can only have an integral bound. So the given non integral
bound was adjusted.

140 Upper bound for integral var xxx truncated to yyy (warning)
An integral variable can only have an integral bound. So the given non integral
bound was adjusted.

141 Infeasible due to conflicting bounds for var xxx
The upper bound given for a variable was smaller than the lower bound.

142 Unknown index xxx for symbol yyy
The index tuple given is not member of the index set of the symbol.

143 Size for subsets xxx is too big or not an integer
The cardinality for the subsets to generate must be given as an integer smaller
than two billion.

144 Tried to build subsets of empty set
The set given to build the subsets of, was the empty set.

145 Illegal size for subsets xxx, should be between 1 and yyy
The cardinality for the subsets to generate must be between 1 and the cardinality
of the base set.

146 Tried to build powerset of empty set
The set given to build the powerset of, was the empty set.

147 use value xxx is too big or not an integer
The use value must be given as an integer smaller than two billion.

148 use value xxx is not positive
Negative or zero values for the use parameter are not allowed.

149 skip value xxx is too big or not an integer
The skip value must be given as an integer smaller than two billion.

150 skip value xxx is not positive
Negative or zero values for the skip parameter are not allowed.

27

ZIMPL

151 Not a valid read template
A read template must look something like "<1n,2n>". There have to be a <
and a > in this order.

152 Invalid read template syntax
Apart from any delimiters like <, >, and commas a template must consists of
number character pairs like 1n, 3s.

153 Invalid field number xxx
The field numbers in a template have to be between 1 and 255.

154 Invalid field type xxx
The only possible field types are n and s.

155 Invalid read template, not enough fields
There has to be at least one field inside the delimiters.

156 Not enough fields in data
The template specified a field number that is higher than the actual number of
field found in the data.

157 Not enough fields in data (value)
The template specified a field number that is higher than the actual number of
field found in the data. The error occurred after the index tuple in the value field.

158 Read from file found no data
Not a single record could be read out of the data file. Either the file is empty, or
all lines are comments.

159 Type error, expected xxx got yyy
The type found was not the expected one, e.g. subtracting a string from a number
would result in this message.

160 Comparison of elements with different types xxx / yyy (warning)
Two elements from different tuples were compared and found to be of different
types. Probably you have an index expression with a constant element, that
does not match the elements of the set. Example: set B:={<i,"a"> in
{<1,2>}};

161 Line xxx: Unterminated string
This line has an odd number of " characters. A String was started, but not ended.

162 Line xxx: Trailing "yyy" ignored (warning)
Something was found after the last semicolon in the file.

28

ZIMPL

163 Line xxx: Syntax Error
A new statement was not started with one of the keywords: set, param, var,
minimize, maximize, subto, or do.

164 Duplicate element xxx for set rejected (warning)
An element was added to a set that was already in it.

165 Comparison of different dimension sets (warning)
Two sets were compared, but have different dimension tuples. (This means they
never had a chance to be equal, other then being empty sets.)

166 Duplicate element xxx for symbol yyy rejected (warning)
An element that was already there was added to a symbol.

167 Comparison of different dimension tuples (warning)
Two tuples with different dimensions were compared. Probably you have an
index expression which does not match the dimension of the tuples in the set.
Example: set B:={<1> in {<1,2>}};

168 No program statements to execute
No ZIMPL statements were found in the files loaded.

169 Execute must return void element
This should not happen. If you encounter this error please email the .zpl file
to mailto:koch@zib.de.

170 Use of uninitialized local variable xxx in call of define yyy
A define was called and one of the arguments was a “name” (of a variable) for
which no value was defined.

171 Wrong number of arguments (xxx instead of yyy) for call of define zzz
A define was called with a different number of arguments than in its definition.

172 Wrong number of entries (xxx) in table line, expected yyy entries
Each line of a parameter initialization table must have exactly the same number
of entries as the index (first) line of the table.

173 Illegal type in element xxx for symbol
A parameter can only have a single value type. Either numbers or strings. In the
initialization both types were present.

174 Numeric field xxx read as "yyy". This is not a number
It was tried to read a field with an ’n’ designation in the template, but what was
read is not a valid number.

29

mailto:koch@zib.de

ZIMPL

175 Illegal syntax for command line define "xxx" – ignored (warning)
A parameter definition using the command line -D flag, must have the form
name=value. The name must be a legal identifier, i. e. it has to start with a
letter and may consist only out of letters and numbers including the underscore.

176 Empty LHS, in Boolean constraint (warning)
The left hand side, i. e. the term with the variables, is empty.

177 Boolean constraint not all integer
No continuous (real) variables are allowed in a Boolean constraint.

178 Conditional always true or false due to bounds (warning)
All or part of a Boolean constraint are always either true or false, due to the
bounds of variables.

179 Conditional only possible on bounded constraints
A Boolean constraint has at least one variable without finite bounds.

180 Conditional constraint always true due to bounds (warning)
The result part of a conditional constraint is always true anyway. This is due to
the bounds of the variables involved.

181 Empty LHS, not allowed in conditional constraint
The result part of a conditional constraint may not be empty.

182 Empty LHS, in variable vabs
There are no variables in the argument to a vabs function. Either everything is
zero, or just use abs.

183 vabs term not all integer
There are non integer variables in the argument to a vabs function. Due to
numerical reasons continuous variables are not allowed as arguments to vabs.

184 vabs term not bounded
The term inside a vabs has at least one unbounded variable.

185 Term in Boolean constraint not bounded
The term inside a vif has at least one unbounded variable.

186 Minimizing over empty set – zero assumed (warning)
The index expression for the minimization was empty. The result used for this
expression was zero.

187 Maximizing over empty set – zero assumed (warning)
The index expression for the maximization was empty. The result used for this
expression was zero.

30

ZIMPL

188 Index tuple has wrong dimension
The number of elements in an index tuple is different from the dimension of the
tuples in the set that is indexed.

189 Tuple number xxx is too big or not an integer
The tuple number must be given as an integer smaller than two billion.

190 Component number xxx is too big or not an integer
The component number must be given as an integer smaller than two billion.

191 Tuple number xxx is not a valid value between 1..yyy
The tuple number must be between one and the cardinality of the set.

192 Component number xxx is not a valid value between 1..yyy
The component number must be between one and the dimension of the set.

193 Different dimension tuples in set initialization
The tuples that should be part of the list have different dimension.

194: Indexing tuple xxx has wrong dimension yyy, expected zzz
The index tuple of an entry in a parameter initialization list must have the same
dimension as the indexing set of the parameter. This is just another kind of error
134.

195: Empty index set for parameter
The index set for a parameter is empty.

196: Indexing tuple xxx has wrong dimension yyy, expected zzz
The index tuple of an entry in a set initialization list must have the same di-
mension as the indexing set of the set. If you use a powerset or subset
instruction, the index set has to be one dimension.

197: Empty index set for set
The index set for a set is empty.

700 log(): OS specific domain or range error message
Function log was called with a zero or negative argument, or the argument was
too small to be represented as a double.

701 sqrt(): OS specific domain error message
Function sqrt was called with a negative argument.

702 ln(): OS specific domain or range error message
Function ln was called with a zero or negative argument, or the argument was
too small to be represented as a double.

31

ZIMPL

800 parse error: expecting xxx (or yyy)
Parsing error. What was found was not what was expected. The statement you
entered is not valid.

801 Parser failed
The parsing routine failed. This should not happen. If you encounter this error
please email the .zpl file to mailto:koch@zib.de.

900 Check failed!
A check instruction did not evaluate to true.

32

mailto:koch@zib.de

ZIMPL

References

[Chv83] Vašek Chvátal. Linear Programming. H.W. Freeman and Company, New York,
1983.

[Dan90] Georg B. Danzig. The diet problem, 1990.

[FGK03] R. Fourier, D. M. Gray, and B. W. Kernighan. AMPL: A Modelling Language for
Mathematical Programming. Brooks/Cole—Thomson Learning, second edition,
2003.

[GNU03] GNU multiple precision arithmetic library (GMP), version 4.1.2., 2003. Code and
documentation available at http://www.swox.com/gmp.

[IBM97] IBM optimization library guide and reference, 1997. For an online reference see
http://www6.software.ibm.com/sos/features/featur11.htm.

[ILO02] ILOG CPLEX Division, 889 Alder Avenue, Suite 200, Incline Village, NV 89451,
USA. ILOG CPLEX 8.0 Reference Manual, 2002. Information available at
http://www.cplex.com.

[Sch03] Alexander Schrijver. Combinatorial Optimization. Springer, 2003.

[vH99] Pascal van Hentenryck. The OPL Optimization Programming Language. MIT Press,
Cambridge, Massachusetts, 1999.

[XPR99] XPRESS-MP Release 11 Reference Manual. Dash Associates, 1999. Information
available at http://www.dashoptimization.com/.

1.29

33

http://www.swox.com/gmp
http://www6.software.ibm.com/ sos/features/featur11.htm
http://www.cplex.com
http://www.dashoptimization.com/

	Preface
	Introduction
	Invocation
	Format
	Expressions
	Sets
	Parameters
	Variables
	Objective
	Constraints
	Details on sum and forall
	Details on if in constraints
	Initializing sets and parameters from a file
	Function Definitions
	Extended Constraints (experimental)
	Extended Functions (experimental)
	The do print and do check commands

	Examples
	Diet problem
	TSP
	Capacitated Facility Location Problem
	n-Queens Problem

	Error messages

