
ZIMPL
(Zuse Institute Mathematical Programming Language)

Thorsten Koch

for Version 1.05
18. March 2003

Abstract

ZIMPL is a little language to translate the mathematical model of a problem
into a linear or (mixed-)integer mathematical program expressed in lp or mps
file format which can be read by a LP or MIP solver.

May the source be with you, Luke!

1 Introduction

Most of the things in ZIMPL (and a lot more) can be found in the wonderful book
about the modelling language AMPL from Robert Fourer, David N. Gay and Brian
W. Kernighan [FGK93]. Indeed if not the guys at ILOG had needed more than three
months just to tell me the price of AMPL for CPLEX, I would probably use AMPL

today. On the other hand, having the source code of a program has its atvantages.
The possibility to run it regardless of architecture and operating system, the ability to
modify it to suite the needs and not having to hassle with license managers may make
a much less powerful program the better choice. And so ZIMPL came into being.

A linear program (LP) might look like this:

min 2x + 3y
subject to x + y ≤ 6

x, y ≥ 0

The usual format to store the description of such a problem is mps invented by IBM

[IBM97] long ago. Nearly all available LP and MIP solvers can read this format. While
mps is a nice format to punch into a punch card and at least a reasonable format to read
for a computer it is quite unreadable for humans.

1

ZIMPL

NAME ex1.mps
ROWS
N OBJECTIV
L c0
COLUMNS

x OBJECTIV 2
x c0 1
y OBJECTIV 3
y c0 1

RHS
RHS c0 6

ENDATA

Another possibility is the lp format [ILO00], which is more readable but is only sup-
ported by a few solvers.

Minimize
cost: +2 x +3 y
Subject to
c0: +1 x +1 y <= 6
End

But since each coefficient of the matrix A must be stated explicitly it is also not a
desirable choice to develop a mathematical model.

Now, with ZIMPL it is possible to write this:

var x;
var y;
minimize cost: 2 * x + 3 * y;
subto c0: x + y <= 6;

and have it automatically translated into mps or lp format. While this looks not much
different from what is in the lp format, the difference can be seen, if we use indexed
variables. Here is an example. This is the LP

min 2x1 + 3x2 + 1.5x3

subject to
∑

3

i=1
xi ≤ 6

xi ≥ 0

And this is how to tell it ZIMPL

set I := { 1 to 3 };
param c[I] := <1> 2, <2> 3, <3> 1.5;
var x[I] >= 0;
minimize value: sum <i> in I : c[i] * x[i];
subto cons: sum <i> in I : x[i] <= 6;

2

ZIMPL

2 Invocation

To run ZIMPL on the model given in the file ex1.zpl type the command

zimpl ex1.zpl

The general case is zimpl [options] <input-files >. It is possible to give
more than one input file. They are read one after the other and then executed as if they
were all in one big file. The result of running ZIMPL will be either an error message
or two files.
The two files are the problem generated from the model in either lp or mps format
with extension .lp or .mps and a file with the extension .tblwhich lists all variable
and constraint names used in the model and there corresponding name in the problem
file. The reason for this name translation is that the mps format can only handle names
up to eight characters long. And in LP format the length of the names is also restricted
to 16 characters.

The following options are possible (only the first two are normally of interest):

-t format Selects the output format. Can be either lp which is default or mps.
-o name Sets the base-name for the output files.

Defaults to the name of the first input file striped of the path and
extension.

-p filter The output is piped through a filter. A %s in the string is replaced
by the output filename. For example -p "gzip -c >%s.gz"
would compress all the output files.

-n cform Select the format for the generation of constraint names. Can be
either cm which will number them 1 . . . n with a ‘c’ in front. cn will
use the name supplied in the subto statement and number them
1 . . . n within the statement. cf will use the name of given with the
subto, then a 1 . . . n number like in cm and then append all the
local variables from the forall statements.

-r Writes an CPLEX ord branching order file.
-b Enables bison debugging output.
-d Enables zimpl debugging output.
-f Enables flex debugging output.
-h Prints a usage message.
-v Enables verbose mode.

A typical invocation is for example:

zimpl -o hardone -t mps data.zpl model.zpl

This reads the files data.zpl and model.zpl and produces hardone.mps and
hardone.tbl.

If mps-output is specified for a maximization problem, the objective function will
be inverted.

3

ZIMPL

3 Format

Each ZPL-file consists of five types of statements: Sets, parameters, variables, an ob-
jective and constraints. Each statement ends with a semicolon (;). Everything from a
number-sign (#) to the end of the line is treated as a comment and is ignored.
If a line starts with the word include followed by a filename in double quotation
marks, this file is read instead of this line.

ZIMPL works on the lowest level with two types of data: Strings and numbers. A
string is delimited by double quotation marks ("). A number can be given as 2, -6.5
or 5.234e-12. Wherever a number or string is required, it is also possible to give a
parameter of the right value type. Also numeric expressions are allowed instead of just
a number. The precedence of numeric, boolean and set operators should be the usual
one. If in doubt use parenthesis to be save.

Numeric expressions

The following functions are currently implemented: ∧, +, -, *, /, mod, div, abs,
floor, ceil, log (logarithm with base 10), ln (logarithm with base e), exp (ex), !
(factorial). ∧ stands for to the power of. mod is the modulo function and div gives the
integer part of a division. ** can be used as synonym for ∧. With min and max it is
possible to find the minimum/maximum member of an one dimensional set of numeric
values. card gives the cardinality of a set. random(a, b) generates a random
number between a and b.
The following is either a numeric or a string expression, depending if expression is a
string or a numeric expression.
if boolean-expression then expression else expression end.

Boolean expressions

For numbers <, <=, ==, ! =, >=, > are defined. For strings only == and ! = are
available. The expression tuple in set-expression can be used to test set membership
of a tuple. Combinations of boolean-expressions with and, or and negation with not
are possible.

Sets

The elements of a set are tuples. Each tuple of a set has the same number of compo-
nents. The components are either numbers or strings. The type of the n-th component
of each tuple must be the same. A tuple starts and ends with < and >, resp. The
components are separated by commas. If tuples are one-dimensional, it is possible to
omit the braces in a list of elements, but then they must be omitted from all tuples of
the set.

4

ZIMPL

Set functions

A cross B Cross product {(x, y)|x ∈ A ∧ y ∈ B}
A union B Union {x|x ∈ A ∨ x ∈ B}
A inter B Intersection {x|x ∈ A ∧ x ∈ B}
A without B Difference {x|x ∈ A ∧ x 6∈ B}
A symdiff B Symmetric difference {x|(x ∈ A ∧ x 6∈ B) ∨ (x ∈

B ∧ x 6∈ A)}
{n to m by s} Generate, {x|x = n + is ≤ m, i ∈ N0}

(default s = 1)
proj(A, t) Projection t = (e1, . . . , en) The new set will consist of n-

tuples, with the i-th compo-
nent beeing the ei-th compo-
nent of A.

It is possible to write * instead of cross, + instead of union, \ or - instead of
without and .. instead of to.

Examples

set A := { 1, 2, 3 };
set B := { "hi", "ha", "ho" };
set C := { <1,2,"x">, <6,5,"y">, <787,12.6,"oh"> };
set D := A cross B;
set E := { 6 to 9 } union A without { <2>, <3> };
set F := <i,j> in Q with i > j and i < 5;
set G := { 1 to 9 } * { 10 to 19 } * { "A", "B" };
set H := proj(G, <3,1>)
will give: <"A",1>, <"A",2"> ... <"B",9>

It is possible to index one set with another set. Here is a list of functions that use this:
powerset(A) Generates all subsets of A {x|x ⊆ A}
subset(A, n) Generates all subsets of A

with n elements {x|x ⊆ A ∧ |x| = n}
indexset(A) The index set of A {1 . . . |A|}

Examples

set I := { 1..3 };
set A[I] := <1> { "a", "b" },

<2> { "c", "e" }, <3> { "f" };
set B[<i> in I] := { 3 * i };
set P[] := powerset(N);
set J := indexset(P);
set S[] := subset(I, 2);

5

ZIMPL

Parameters

Parameters can be declared with or without an indexing set. Without indexing the pa-
rameter is just one value, which is either a number or a string. For indexed parameters
there is one value for each member of the set. It is possible to declare a default value.
Parameters are declared in the following way: The keyword param is followed by
the name of the parameter optionally followed by the indexing set. Then after the
assignment sign comes a list of pairs. The first element of each pair is a tuple from the
index set, the second element is the value of the parameter for this index.

Examples

param q := 5;
param u[A] := <1> 17, <2> 29, <3> 12 default 99;
param w[C] := <1,2,"x"> 1/2, <6,5,"y"> 2/3;
param x[<i> in I with i mod 2 == 0] := 3 * i;

In the example, no value is given for index <787,12.6,”oh”> of parameter w, that is
assignments need not to be complete. This is correct as long as it is never referenced.

Variables

Like parameters, variables can be indexed. A variable has to be one out of three pos-
sible types: Continuous (called real), binary or integer. The default is real. Variables
may have lower and upper bounds. Defaults are zero as lower and infinity as upper
bound. Binary variables are always bounded between zero and one. It is possible to
compute the value of the lower or upper bounds depending on the index for the vari-
able (see last declaration in the example). Bounds can also be set to infinity and
-infinity.

Examples

var x1;
var x2 binary;
var y[A] real >= 2 <= 18;
var z[<a,b,c> in C] integer

>= a * 10
<= if b <= 3 then p[b] else 10 end;

Remember: if nothing is specified a lower bounds of zero is assumed.

6

ZIMPL

Objective

There must be exactly one objective statement in a model. The objective can be either
minimize or maximize. Following the keyword is a name, a colon (:) and then a
term consisting of variables.

Example

minimize cost: 12 * x1 -4.4 * x2
+ sum <a> in A : u[a] * y[a]
+ sum <a,b,c> in C with a in E and b > 3 : -a/2 * z[a,b,c];

Constraints

The general format for a constraint is subto name: term sense term. Name
can be any name starting with a letter. The term is defined as in the objective. Sense is
one of <=, >= and ==. Many constraints can be generated with one statement by the
use of the forall instruction, see below.

Examples

subto time : 3 * x1 + 4 * x2 <= 7;
subto space: sum <a> in A : 2 * u[a] * y[a] >= 50;
subto weird: forall <a> in A :

sum <a,b,c> in C : z[a,b,c] == 55;
subto c21: 6 * (sum <i> in A : x[i]

+ sum <j> in B : y[j]) >= 2;
subto c40: x[1] == a[1] +

2 * sum <i> in A do 2*a[i]*x[i]*3 + 4;

Details on sum and forall

The general forms are
forall index do term and sum index do term.

It is possible to nest several forall instructions. The general form of index is
tuple in set with boolean-expression.

It is allowed to write a colon (:) instead of do and a vertical bar (|) instead of with.
The number of components in the tuple and in the components of the mebers of the
set must match. The with part of an index is optional. The set can be any expression
giving a set.

Examples

forall <i,j> in X cross { 1 to 5 } without { <2,3> }
with i > 5 and j < 2 do

7

ZIMPL

sum <i,j,k> in X cross { 1 to 3 } cross Z do
p[i] * q[j] * w[j,k] >= if i == 2 then 17 else 53;

Note that in the example i and j are set by the forall instruction. So they are fixed
for all invocations of sum.

Initialising sets and parameters from a file

It is possible to load the values for a set or a parameter from a file. The syntax is

read filename as template [skip n] [use n] [fs s] [comment s]

filename is the name of the file to read.
template is a string with a template for the tuples to generate. Each input line from the
file is split in fields. The splitting is done according to the following rules: Whenever
a space, tab, comma, semicolon or double colon is encountered a new field is started.
Text that is enclosed in double quotes is not split, the quotes are allways removed.
When a field is split all space and tab charaters around the splitting are removed. If the
split is due to a comma, semicolon or double colon, each occurence of these characters
starts a new field.

Examples

All these lines have three fields:

Hallo;12;3
Moin 7 2
"Hallo, Peter"; "Nice to meet you" 77
,,2

For each component of the tuple the number of the field to use for the value is given,
followed by either a n if the field should be interpreted as a number or s for a string.
Have a look at the example, it is quite obvious how it works. After the template some
optional modifiers can be given. The order does not matter.
skip n instructs to skip the first n lines of the file.
use n limits the number of lines to use to n.
comment s sets a list of characters that start comments in the file. Each line is ended
when any of the comment characters is found.
When a file is read, empty lines are skiped and not counted for the use clause. They
are counted for the skip clause.

Examples

set P := { read "nodes.txt" as <1s> };

nodes.txt:

8

ZIMPL

Hamburg -> <"Hamburg">
München -> <"München">
Berlin -> <"Berlin">

set Q := { read "blabla.txt" as "<1s,5n,2n>" skip 1 use 2 };

blabla.txt:
Name;Nr;X;Y;No -> skip
Hamburg;12;x;y;7 -> <"Hamburg",7,12>
Bremen;4;x;y;5 -> <"Bremen,5,4>
Berlin;2;x;y;8 -> skip

param cost[P] := read "cost.txt" as "<1s> 4n" comment "#";

cost.txt:
Name Price -> skip
Hamburg 1000 -> <"Hamburg"> 1000
München 1200 -> <"München"> 1200
Berlin 1400 -> <"Berlin"> 1400

param cost[Q] := read "haha.txt" as "<3s,1n,2n> 4s";

haha.txt:
1:2:ab:con1 -> <"ab",1,2> "con1"
2:3:bc:con2 -> <"bc",2,3> "con1"
4:5:de:con3 -> <"de",4,5> "con1"

9

ZIMPL

4 Error messages

Here are some of the incomprehensible error messages ZIMPL can produce:

Comparison of different types
It is not possible to compare a number with a string.

xxx of incompatible sets
The members of the two sets involved in operation xxx have not the same number
of components.

Illegal element xxx for symbol
In the initialisation of a parameter, tuple xxx is not a member in the index set.

WITH not allowed here
When initialising the bounds of variables by index, the with clause to exclude
some of the elements is not allowed.

Comparison of different dimension tuples
Two tuples were compared which have a different number of components. This
is never a good idea, since such tuples are always different.

Comparison of elements with different types
Two tuples were compared which have a different type for the n-th element. This
is never a good idea, since such tuples are always different.

Type error, expected xxx got yyy
In some context type xxx was expected, but the interpreter found type yyy. The
meaning of the numbers could be looked up in code.h.

Duplicate constraint name ”xxx”
The name given to a subto statement was allready used with another subto
statement. Either change the name, or use -n cm or -n cf.

5 Remarks

ZIMPL is licensed under the GNU general public licence version 2. For more infor-
mation on free software see http://www.gnu.org. The latest version of ZIMPL

can be found at http://www.zib.de/koch/zimpl. If you find any bugs you
can email me at mailto:koch@zib.de. Please include an example that shows the
problem. If somebody extends ZIMPL, I am interested in getting patches to put them
back in the main distribution.

10

http://www.gnu.org
http://www.zib.de/koch/zimpl
mailto:koch@zib.de

ZIMPL

References

[FGK93] R. Fourier, D. M. Gray, and B. W. Kernighan. AMPL: A Modelling Lan-
guage for Mathematical Programming. boyd & fraser publishing company,
Danvers, Massachusetts, 1993.

[IBM97] IBM Optimization Library Guide and Reference. IBM Corp., 1997.

[ILO00] ILOG CPLEX 7.0 Reference Manual. ILOG, 2000.

[vH99] Pascal van Hentenryck. The OPL Optimization Programming Language.
MIT Press, Cambridge, Massachusetts, 1999.

[XPR99] XPRESS-MP Release 11 Reference Manual. Dash Associates, 1999.

1.10

11

	Introduction
	Invocation
	Format
	Error messages
	Remarks

