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Abstract

Z is a little language to translate the mathematical model of a problem
into a linear or (mixed-)integer mathematical program expressed in  or 

file format which can be read and (hopefully) solved by a  or  solver.

 Preface

May the source be with you, Luke!

Many of the things in Z (and a lot more) can be found in the excellent book

about the modeling language  from Robert Fourer, David N. Gay and Brian W.

Kernighan [FGK]. Those interested in an overview of the current state-of-the-art in

(commercial) modeling languages might have a look at [Kalb]. Having the source

code of a program has its advantages. The possibility to run it regardless of architecture

and operating system, the ability to modify it to suite the needs, and not having to has-

sle with license managers may make a much less powerful program the better choice.

And so Z came into being.

By now Z has grown up and matured. It has been used in several industry

projects and university lectures, showing that it is able to cope with large scale models

and also with students. This would have not been possible without my early adopters

Armin Fügenschuh, Marc Pfetsch, Sascha Lukac, Daniel Junglas, Jörg Rambau and

Tobias Achterberg. Thanks for there comments and bug reports.

Z is licensed under the GNU general public license version . For more in-

formation on free software see http://www.gnu.org. The latest version of Z

can be found at http://www.zib.de/koch/zimpl. If you find any bugs, please

send an email to mailto:koch@zib.de. But do not forget to include an example

that shows the problem. If somebody extends Z, I am interested in getting patches

to include them in the main distribution.

The best way to refer to Z in a publication is to cite my PhD thesis [Koc]

@PHDTHESIS{Koch2004,
author = "Thorsten Koch",
title = "Rapid Mathematical Programming",
school = "Technische {Universit\"at} Berlin",
year = "2004",
url = "http://www.zib.de/Publications/abstracts/ZR-04-58/",
note = "ZIB-Report 04-58"

}



http://www.gnu.org
http://www.zib.de/koch/zimpl
mailto:koch@zib.de
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 Introduction

Consider the following linear program:

min 2x + 3y

subject to x + y 6 6

x, y > 0

The standard format used to feed such a problem into a solver is called .  invented it for
the Mathematical Programming System/ [Kala, Spi] in the sixties. Nearly all available

 and  solvers can read this format. While  is a nice format to punch into a punch card

and at least a reasonable format to read for a computer, it is quite unreadable for humans. For
instance, the  file of the above linear program looks as follows:

NAME ex1 . mps
ROWS

N OBJECTIV
L c1

COLUMNS
x OBJECTIV 2
x c1 1
y OBJECTIV 3
y c1 1

RHS
RHS c1 6

BOUNDS
LO BND x 0
LO BND y 0

ENDATA

Another possibility is the  format [ILO], which is more readable but is only supported by

a few solvers.

Minimize
cost: +2 x +3 y

Subject to
c1: +1 x +1 y <= 6

End

But since each coefficient of the matrix A must be stated explicitly it is also not a desirable
choice to develop a mathematical model.

Now, with Z it is possible to write this:

var x;
var y;
minimize cost: 2 * x + 3 * y;
subto c1: x + y <= 6;

and have it automatically translated into  or  format. While this looks not much different
from what is in the  format, the difference can be seen, if we use indexed variables. Here is

an example. This is the :

min 2x1 + 3x2 + 1.5x3

subject to
∑3

i=1 xi 6 6

xi > 0

 The  format has also some idiosyncratic restrictions. For example variables should not be named

e12 or the like. And it is not possible to specify ranged constraints.


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And this is how to tell it to Z:

s e t I : = { 1 t o 3 } ;
param c [ I ] : = <1> 2 , <2> 3 , <3> 1 . 5 ;
v a r x [ I ] >= 0 ;
m i n i m i z e c o s t : sum < i > i n I : c [ i ] * x [ i ] ;
s u b t o cons : sum < i > i n I : x [ i ] <= 6 ;

 Invocation

In order to run Z on a model given in the file ex1.zpl type the command:

zimpl ex1.zpl

In general terms the command is:

zimpl [options] <input-files>

It is possible to give more than one input file. They are read one after the other as if they were
all one big file. If any error occurs while processing, Z prints out an error message and

aborts. In case everything goes well, the results are written into two or more files, depending

on the specified options.
The first output file is the problem generated from the model in either  , , or

a “human readable” format, with extensions .lp, .mps, or .hum, respectively. The next one is
the table file, which has the extension .tbl. The table file lists all variable and constraint names

used in the model and their corresponding names in the problem file. The reason for this name

translation is the limitation of the length of names in the  format to eight characters. Also
the  format restricts the length of names. The precise limit is depending on the version.

 . has a limit of  characters, and ignores silently the rest of the name, while  .

has a limit of  characters, but will for some commands only show the first  characters in
the output.

A complete list of all options understood by Z can be found in Table . A typical
invocation of Z is for example:

zimpl -o solveme -t mps data.zpl model.zpl

This reads the files data.zpl and model.zpl as input and produces as output the files solveme.mps

and solveme.tbl. Note that in case -output is specified for a maximization problem, the ob-

jective function will be inverted, because the  format has no provision for stating the sense
of the objective function. The default is to assume maximization.

 Format

Each -file consists of six types of statements:

I Sets

I Parameters

I Variables

I Objective

I Constraints

I Function definitions

Each statement ends with a semicolon. Everything from a hash-sign #, provided it is not part

of a string, to the end of the line is treated as a comment and is ignored. If a line starts with the
word include followed by a filename in double quotation marks, then this file is read and

processed instead of the line.


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-t format Selects the output format. Can be either lp, which is default, or mps,
or hum, which is only human readable.

-o name Sets the base-name for the output files.
Defaults to the name of the first input file with its path and extension
stripped off.

-F filter The output is piped through a filter. A %s in the string is replaced by
the output filename. For example -F "gzip -c >%s.gz" would
compress all the output files.

-n cform Select the format for the generation of constraint names. Can be cm,
which will number them 1 . . . n with a ‘c’ in front. cn will use the name
supplied in the subto statement and number them 1 . . . n within the
statement. cf will use the name given with the subto, then a 1 . . . n

number like in cm and then append all the local variables from the
forall statements.

-s seed Positive seed number for the random number generator.
-v 0..5 Set the verbosity level. 0 is quiet, 1 is default, 2 is verbose, 3 and 4 are

chatter, and 5 is debug.
-D name=val Sets the parameter name to the specified value. This is equivalent with

having this line in the Z program: param name:=val.
-b Enables bison debug output.
-f Enables flex debug output.
-h Prints a help message.
-m Writes a CPLEX mst (Mip STart) file.
-O Try to reduce the generated LP by doing some presolve analysis.
-r Writes a CPLEX ord branching order file.
-V Prints the version number.

Table : Z options

. Expressions

Z works on its lowest level with two types of data: Strings and numbers. Wherever a

number or string is required it is also possible to use a parameter of the corresponding value
type. In most cases expressions are allowed instead of just a number or a string. The precedence

of operators is the usual one, but parentheses can always be used to specify the evaluation order

explicitly.

Numeric expressions

A number in Z can be given in the usual format, e. g. as , -. or .e-. Numeric ex-

pressions consist of numbers, numeric valued parameters, and any of the operators and func-
tions listed in Table . Additionally the functions shown in Table  can be used. Note that

those functions are only computed with normal double precision floating-point arithmetic

and therefore have limited accuracy. Examples on how to use the min and max functions can
be found in Section . on page .

String expressions

A string is delimited by double quotation marks ", e. g. "Hallo Keiken".


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a∧b, a**b a to the power of b ab

a+b addition a + b

a-b subtraction a − b

a*b multiplication a · b
a/b division a/b

a mod b modulo a mod b

abs(a) absolute value |a|

sgn(a) sign x > 0 ⇒ 1, x < 0 ⇒ −1, else 0

floor(a) round down bac
ceil(a) round up dae
a! factorial a!
min(S) minimum of a set mins∈S e(s)

max(S) maximum of a set maxs∈S e(s)

min(a,b,c,...,n) minimum of a list min(a, b, c, . . . , n)

max(a,b,c,...,n) maximum of a list max(a, b, c, . . . , n)

card(S) cardinality of a set |S|

random(m,n) pseudo random number ∈ [m,n]

ord(A,n,c) ordinal c-th component of the n-th
element of set A.

if a then b
else c end conditional

{

b, if a = true
c, if a = false

Table : Rational arithmetic functions

sqrt(a) square root
√

a

log(a) logarithm to base 10 log10 a

ln(a) natural logarithm ln a

exp(a) exponential function ea

Table : Double precision functions

Variant expressions

The following is either a numeric or a string expression, depending on whether expression is a

string or a numeric expression:

if boolean-expression then expression else expression end

The same is true for the ord(set, tuple-number, component-number) function, which evaluates

to a specific element of a set (details about sets are covered below).

Boolean expressions

These evaluate either to true or to false. For numbers and strings the relational operators <,

<=, ==, !=, >=, and > are defined. Combinations of Boolean expressions with and, or, and
xor  and negation with not are possible. The expression tuple in set-expression (explained

in the next section) can be used to test set membership of a tuple.

. Sets

Sets consist of tuples. Each tuple can only be once in a set. The sets in Z are all ordered,
but there is no particular order of the tuples. Sets are delimited by braces, { and }, respectively.

a xor b := a ∧ ¬b ∨ ¬a ∧ b


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Tuples consist of components. The components are either numbers or strings. The compo-

nents are ordered. All tuples of a specific set have the same number of components. The type
of the n-th component for all tuples of a set must be the same, i. e. they have to be either all

numbers or all strings. The definition of a tuple is enclosed in angle brackets < and >, e. g.
<1,2,"x">. The components are separated by commas. If tuples are one-dimensional, it is

possible to omit the tuple delimiters in a list of elements, but in this case they must be omitted

from all tuples in the definition, e. g. {1,2,3 } is valid while {1,2,<3> } is not.
Sets can be defined with the set statement. It consists of the keyword set, the name of the

set, an assignment operator := and a valid set expression.

Sets are referenced by the use of a template tuple, consisting of placeholders, which are
replaced by the values of the components of the respective tuple. For example, a set S consisting

of two-dimensional tuples could be referenced by <a,b> in S. If any of the placeholders are

actual values, only those tuples matching these values will be extracted. For example, <1,b>
in S will only get those tuples whose first component is 1. Please note that if one of the

placeholders is the name of an already defined parameter, set or variable, it will be substituted.
This will result either in an error or an actual value.

Examples

set A := { 1, 2, 3 };
set B := { "hi", "ha", "ho" };
set C := { <1,2,"x">, <6,5,"y">, <787,12.6,"oh"> };

For set expressions the functions and operators given in Table  are defined.

An example for the use of the if boolean-expression then set-expression else set-expression

end can be found on page  together with the examples for indexed sets.

Examples

set D := A cross B;
set E := { 6 to 9 } union A without { 2, 3 };
set F := { 1 to 9 } * { 10 to 19 } * { "A", "B" };
set G := proj(F, <3,1>);
# will give: { <"A",1>, <"A",2"> ... <"B",9> }

Conditional sets

It is possible to restrict a set to tuples that satisfy a Boolean expression. The expression given by

the with clause is evaluated for each tuple in the set and only tuples for which the expression

evaluates to true are included in the new set.

Examples

set F := { <i,j> in Q with i > j and i < 5 };
set A := { "a", "b", "c" };
set B := { 1, 2, 3 };
set V := { <a,2> in A*B with a == "a" or a == "b" };
# will give: { <"a",2>, <"b",2> }


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A*B,
A cross B cross product {(x, y) | x ∈ A ∧ y ∈ B}

A+B,
A union B union {x | x ∈ A ∨ x ∈ B}

union <i>
in I: S union

⋃
i∈I Si

A inter B intersection {x | x ∈ A ∧ x ∈ B}

inter <i>
in I: S intersection

⋂
i∈I Si

A\B, A-B,
A without B difference {x | x ∈ A ∧ x 6∈ B}

A symdiff B symmetric difference {x | (x ∈ A ∧ x 6∈ B) ∨ (x ∈ B ∧ x 6∈ A)}

{n..m by s}, generate, {x | x = min(n,m) + i|s| 6 max(n,m),

(default s = 1) i ∈ N0, x, n,m, s ∈ Z}

{n to m by s} generate {x | x = n + is 6 m, i ∈ N0, x, n,m, s ∈ Z}

proj(A, t) projection The new set will consist of n-tuples, with
t = (e1, . . . , en) the i-th component being the ei-th com-

ponent of A.
if a then b
else c end conditional

{

b, if a = true
c, if a = false

Table : Set related functions


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Indexed sets

It is possible to index one set with another set resulting in a set of sets. Indexed sets are ac-
cessed by adding the index of the set in brackets [ and ], like S[7]. Table  lists the available

functions. There are three possibilities how to assign to an indexed set:

I The assignment expression is a list of comma-separated pairs, consisting of a tuple from

the index set and a set expression to assign.

I If an index tuple is given as part of the index, e. g. <i> in I, the assignment is evalu-
ated for each value of index tuple.

I By use of a function that returns an indexed set.

Examples

set I := { 1..3 };
set A[I] := <1> {"a","b"}, <2> {"c","e"}, <3> {"f"};
set B[<i> in I] := { 3 * i };
set P[] := powerset(I);
set J := indexset(P);
set S[] := subsets(I, 2);
set K[<i> in I] := if i mod 2 == 0 then { i } else { -i } end;
set U := union <i> in I : A[i];
set IN := inter <j> in J : P[j]; # empty!

powerset(A) generates all subsets of A {X | X ⊆ A}

subsets(A,n) generates all subsets of A

with n elements {X | X ⊆ A ∧ |X| = n}

indexset(A) the index set of A {1 . . . |A|}

Table : Indexed set functions

. Parameters

Parameters can be declared with or without an index set. Without indexing a parameter is just
a single value, which is either a number or a string. For indexed parameters there is one value

for each member of the set. It is possible to declare a default value.

Parameters are declared in the following way: The keyword param is followed by the name
of the parameter optionally followed by the index set. Then after the assignment sign comes

a list of pairs. The first element of each pair is a tuple from the index set, while the second

element is the value of the parameter for this index.

Examples

set A := { 12 .. 30 };
set C := { <1,2,"x">, <6,5,"y">, <3,7,"z"> };
param q := 5;
param u[A] := <13> 17, <17> 29, <23> 12 default 99;
param umin := min <a> in A : u[a];
param mmax := max <i> in { 1 .. 10 } : i mod 5;
param w[C] := <1,2,"x"> 1/2, <6,5,"y"> 2/3;
param x[<i> in { 1 .. 8 } with i mod 2 == 0] := 3 * i;


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Assignments need not to be complete. In the example, no value is given for index <3,7,"z">

of parameter w. This is correct as long as it is never referenced.

Parameter tables

It is possible to initialize multi-dimensional indexed parameters from tables. This is especially

useful for two-dimensional parameters. The data is put in a table structure with | signs on each

margin. Then a headline with column indices has to be added, and one index for each row of
the table is needed. The column index has to be one-dimensional, but the row index can be

multi-dimensional. The complete index for the entry is built by appending the column index
to the row index. The entries are separated by commas. Any valid expression is allowed here.

As can be seen in the third example below, it is possible to add a list of entries after the table.

Examples

set I := { 1 .. 10 };
set J := { "a", "b", "c", "x", "y", "z" };

param h[I*J] := | "a", "c", "x", "z" |
|1| 12, 17, 99, 23 |
|3| 4, 3,-17, 66*5.5 |
|5| 2/3, -.4, 3, abs(-4)|
|9| 1, 2, 0, 3 | default -99;

param g[I*I*I] := | 1, 2, 3 |
|1,3| 0, 0, 1 |
|2,1| 1, 0, 1 |;

param k[I*I] := | 7, 8, 9 |
|4| 89, 67, 55 |
|5| 12, 13, 14 |, <1,2> 17, <3,4> 99;

The last example is equivalent to:

param k[I*I] := <4,7> 89, <4,8> 67, <4,9> 44, <5,7> 12,
<5,8> 13, <5,9> 14, <1,2> 17, <3,4> 99;

. Variables

Like parameters, variables can be indexed. A variable has to be one out of three possible types:

Continuous (called real), binary or integer. The default type is real. Variables may have lower

and upper bounds. Defaults are zero as lower and infinity as upper bound. Binary variables
are always bounded between zero and one. It is possible to compute the value of the lower or

upper bounds depending on the index of the variable (see the last declaration in the example).

Bounds can also be set to infinity and -infinity.

Examples

var x1;
var x2 binary;
var y[A] real >= 2 <= 18;
var z[<a,b> in C] integer

>= a * 10 <= if b <= 3 then p[b] else 10 end;


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. Objective

There must be at most one objective statement in a model. The objective can be eitherminimize
or maximize. Following the keyword is a name, a colon : and then a linear term expressing

the objective function.

If there is an objective offset, i. e., a constant value in the objective function, Z auto-
matically generates an internal variable @@ObjOffset set to one. This variable is put into the

objective function with the appropriate coefficient.

Example

minimize cost: 12 * x1 -4.4 * x2 + 5
+ sum <a> in A : u[a] * y[a]
+ sum <a,b,c> in C with a in E and b > 3 : -a/2 * z[a,b,c];

maximize profit: sum <i> in I : c[i] * x[i];

. Constraints

The general format for a constraint is:

subto name: term sense term

Alternatively it is also possible to define ranged constraints, which have the form:

name: expr sense term sense expr

name can be any name starting with a letter. term is defined as in the objective. sense is

one of <=, >= and ==. In case of ranged constraints both senses have to be equal and may

not be ==. expr is any valid expression that evaluates to a number. Many constraints can be
generated with one statement by the use of the forall instruction, as shown below.

Examples

subto time: 3 * x1 + 4 * x2 <= 7;
subto space: 50 >= sum <a> in A: 2 * u[a] * y[a] >= 5;
subto weird: forall <a> in A: sum <a,b,c> in C: z[a,b,c]==55;
subto c21: 6*(sum <i> in A: x[i] + sum <j> in B : y[j]) >= 2;
subto c40: x[1] == a[1] + 2 * sum <i> in A do 2*a[i]*x[i]*3+4;

. Details on sum and forall

The general forms are:

forall index do term and sum index do term

It is possible to nest several forall instructions. The general form of index is:

tuple in set with boolean-expression

It is allowed to write a colon : instead of do and a vertical bar | instead of with. The number
of components in the tuple and in the members of the set must match. The with part of an

index is optional. The set can be any expression giving a set.

The reason for this is that there is no portable way to put an offset into the objective function in

neither  nor -format.


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Examples

forall <i,j> in X cross { 1 to 5 } without { <2,3> }
with i > 5 and j < 2 do

sum <i,j,k> in X cross { 1 to 3 } cross Z do
p[i] * q[j] * w[j,k] >= if i == 2 then 17 else 53;

Note that in the example i and j are set by the forall instruction. So they are fixed in all

invocations of sum.

. Details on if in constraints

It is possible to put two variants of a constraint into an if-statement. The same applies for

terms. A forall statement inside the result part of an if is also possible.

Examples

subto c1: forall <i> in I do
if (i mod 2 == 0) then 3 * x[i] >= 4

else -2 * y[i] <= 3 end;

subto c2: sum <i> in I :
if (i mod 2 == 0) then 3 * x[i] else -2 * y[i] end <= 3;

. Special ordered sets

Z can be used to specify special ordered sets () for an integer program. If a model

contains any  a sos file will be written together with the lp or mps file. The general
format of a special ordered set is:

sos name: [type1|type2] priority expr : term

name can be any name starting with a letter.  use the same namespace as constraints. term
is defined as in the objective. type1 or type2 indicate whether a type- or type- special

ordered set is declared. The priority is optional and equal to the priority setting for variables.

Many  can be generated with one statement by the use of the forall instruction, as shown
above.

Examples

sos s1: type1: 100 * x[1] + 200 * x[2] + 400 * x[3];
sos s2: type2 priority 100 : sum <i> in I: a[i] * x[i];
sos s3: forall <i> in I with i > 2:

type1: (100 + i) * x[i] + i * x[i-1];

. Initializing sets and parameters from a file

It is possible to load the values for a set or a parameter from a file. The syntax is:

read filename as template [skip n] [use n] [fs s] [comment s]

filename is the name of the file to read. template is a string with a template for the tuples to

generate. Each input line from the file is split into fields. The splitting is done according to the
following rules: Whenever a space, tab, comma, semicolon or colon is encountered a new field

is started. Text that is enclosed in double quotes is not split and the quotes are always removed.

When a field is split all space and tab characters around the splitting point are removed. If the
split is due to a comma, semicolon or colon, each occurrence of these characters starts a new

field.
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Examples

All these lines have three fields:

Hallo;12;3
Moin 7 2
"Hallo, Peter"; "Nice to meet you" 77
,,2

For each component of the tuple, the number of the field to use for the value is given, followed

by either n if the field should be interpreted as a number or s for a string. After the template
some optional modifiers can be given. The order does not matter. skip n instructs to skip

the first n lines of the file. use n limits the number of lines to use to n. comment s sets a

list of characters that start comments in the file. Each line is ended when any of the comment
characters is found. When a file is read, empty lines are skipped and not counted for the use
clause. They are counted for the skip clause.

Examples

set P := { read "nodes.txt" as "<1s>" };

nodes.txt:
Hamburg → <"Hamburg">

München → <"München">
Berlin → <"Berlin">

set Q := { read "blabla.txt" as "<1s,5n,2n>" skip 1 use 2 };

blabla.txt:
Name;Nr;X;Y;No → skip
Hamburg;12;x;y;7 → <"Hamburg",,>

Bremen;4;x;y;5 → <"Bremen",,>

Berlin;2;x;y;8 → skip

param cost[P] := read "cost.txt" as "<1s> 2n" comment "#";

cost.txt:
# Name Price → skip

Hamburg 1000 → <"Hamburg"> 

München 1200 → <"München"> 

Berlin 1400 → <"Berlin"> 

param cost[Q] := read "haha.txt" as "<3s,1n,2n> 4s";

haha.txt:
1:2:ab:con1 → <"ab",,> "con"

2:3:bc:con2 → <"bc",,> "con"

4:5:de:con3 → <"de",,> "con"

As with table format input, it is possible to add a list of tuples or parameter entries after a read

statement.

Examples

set A := { read "test.txt" as "<2n>", <5>, <6> };
param winniepoh[X] :=

read "values.txt" as "<1n,2n> 3n", <1,2> 17, <3,4> 29;
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It is also possible to read a single value into a parameter. In this case, either the file should

contain only a single line, or the read statement should be instructed by means of a use 1
parameter only to read a single line.

Examples

# Read the fourth value in the fifth line
param n := read "huhu.dat" as "4n" skip 4 use 1

. Function definitions

It is possible to define functions within Z. The value a function returns has to be either
a number, a string or a set. The arguments of a function can only be numbers or strings, but

within the function definition it is possible to access all otherwise declared sets, parameters and
variables.

The definition of a function has to start with defnumb,defstrg or defset, depending

on the return value. Then follows the name of the function and a list of argument names put
in parentheses. Next is an assignment operator := and a valid expression or set expression.

Examples

defnumb dist(a,b) := sqrt(a*a + b*b);
defstrg huehott(a) := if a < 0 then "hue" else "hott" end;
defset bigger(i) := { <j> in K with j > i };

. Extended constraints

Z has the possibility to generate systems of constraints that mimic conditional constraints.

The general syntax is as follows (note that the else part is optional):

vif boolean-constraint then constraint [ else constraint ] end

where boolean-constraint consists of a linear expression involving variables. All these variables

have to be bounded integer or binary variables. It is not possible to use any continuous variables
or integer variables with infinite bounds in a boolean-constraint. All comparison operators (<,

6, ==, !=, >, >) are allowed. Also combination of several terms with and, or, and xor and
negation with not is possible. The conditional constraints (those which follow after then or

else) may include bounded continuous variables. Be aware that using this construct will lead

to the generation of several additional constraints and variables.

Examples

var x[I] integer >= 0 <= 20;
subto c1: vif 3 * x[1] + x[2] != 7

then sum <i> in I : y[i] <= 17
else sum <k> in K : z[k] >= 5 end;

subto c2: vif x[1] == 1 and x[2] > 5 then x[3] == 7 end;
subto c3: forall <i> in I with i < max(I) :

vif x[i] >= 2 then x[i + 1] <= 4 end;

. Extended functions

It is possible to use special functions on terms with variables that will automatically be con-

verted into a system of inequalities. The arguments of these functions have to be linear terms
consisting of bounded integer or binary variables. At the moment only the function vabs(t)
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that computes the absolute value of the term t is implemented, but functions like the mini-

mum or the maximum of two terms, or the sign of a term can be implemented in a similar
manner. Again, using this construct will lead to the generation of several additional constraints

and variables.

Examples

var x[I] integer >= -5 <= 5;
subto c1: vabs(sum <i> in I : x[i]) <= 15;
subto c2: vif vabs(x[1] + x[2]) > 2 then x[3] == 2 end;

. The do print and do check commands

The do command is special. It has two possible incarnations: print and check. printwill
print to the standard output stream whatever numerical, string, Boolean or set expression, or

tuple follows it. This can be used for example to check if a set has the expected members, or

if some computation has the anticipated result. check always precedes a Boolean expression.
If this expression does not evaluate to true, the program is aborted with an appropriate error

message. This can be used to assert that specific conditions are met. It is possible to use a

forall clause before a print or check statement.

Examples

set I := { 1..10 };
do print I;
do forall <i> in I with i > 5 do print sqrt(i);
do forall <p> in P do check sum <p,i> in PI : 1 >= 1;
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 Modeling examples

In this section we show some examples of well-known problems translated into Z format.

. The diet problem

This is the first example in [Chv, Chapter , page ]. It is a classic so-called diet problem, see

for example [Dan] about its implications in practice.

Given a set of foods F and a set of nutrients N, we have a table πfn of the amount of
nutrient n in food f. Now Πn defines how much intake of each nutrient is needed. ∆f denotes

for each food the maximum number of servings acceptable. Given prices cf for each food, we

have to find a selection of foods that obeys the restrictions and has minimal cost. An integer
variable xf is introduced for each f ∈ F indicating the number of servings of food f. Integer

variables are used, because only complete servings can be obtained, i. e. half an egg is not an

option. The problem may be stated as:

min
∑

f∈F

cfxf subject to

∑

f∈F

πfnxf > Πn for all n ∈ N

0 6 xf 6 ∆f for all f ∈ F

xf ∈ N0 for all f ∈ F

This translates into Z as follows:

s e t Food : = { " Oatmeal " , " C h i c k e n " , " Eggs " ,
" M i l k " , " P i e " , " P o r k " } ;

s e t N u t r i e n t s : = { " Energy " , " P r o t e i n " , " C a l c i u m " } ;
s e t A t t r : = N u t r i e n t s + { " S e r v i n g s " , " P r i c e " } ;

param needed [ N u t r i e n t s ] : =
< " Energy " > 2 0 0 0 , < " P r o t e i n " > 5 5 , < " C a l c i u m " > 8 0 0 ;

param d a t a [ Food * A t t r ] : =
| " S e r v i n g s " , " Energy " , " P r o t e i n " , " C a l c i u m " , " P r i c e " |

| " Oatmeal " | 4 , 110 , 4 , 2 , 3 |
| " C h i c k e n " | 3 , 205 , 32 , 12 , 24 |
| " Eggs " | 2 , 160 , 13 , 54 , 13 |
| " M i l k " | 8 , 160 , 8 , 284 , 9 |
| " P i e " | 2 , 420 , 4 , 22 , 20 |
| " P o r k " | 2 , 260 , 14 , 80 , 19 | ;
# ( k c a l ) ( g ) (mg ) ( c e n t s )

v a r x [ < f > i n Food ] i n t e g e r >= 0 <= d a t a [ f , " S e r v i n g s " ] ;

m i n i m i z e c o s t : sum <f > i n Food : d a t a [ f , " P r i c e " ] * x [ f ] ;

s u b t o need : f o r a l l <n> i n N u t r i e n t s do
sum <f > i n Food : d a t a [ f , n ] * x [ f ] >= needed [ n ] ;

The cheapest meal satisfying all requirements costs  cents and consists of four servings of
oatmeal, five servings of milk and two servings of pie.
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. The traveling salesman problem

In this example we show how to generate an exponential description of the symmetric traveling

salesman problem () as given for example in [Sch, Section .].

Let G = (V, E) be a complete graph, with V being the set of cities and E being the set of

links between the cities. Introducing binary variables xij for each (i, j) ∈ E indicating if edge
(i, j) is part of the tour, the  can be written as:

min
∑

(i,j)∈E

dijxij subject to

∑

(i,j)∈δv

xij = 2 for all v ∈ V

∑

(i,j)∈E(U)

xij 6 |U| − 1 for all U ⊆ V, ∅ 6= U 6= V

xij ∈ {0, 1} for all (i, j) ∈ E

The data is read in from a file that gives the number of the city and the x and y coordinates.
Distances between cities are assumed Euclidean. For example:

# City X Y
Berlin 5251 1340
Frankfurt 5011 864
Leipzig 5133 1237
Heidelberg 4941 867
Karlsruhe 4901 840
Hamburg 5356 998
Bayreuth 4993 1159
Trier 4974 668
Hannover 5237 972

Stuttgart 4874 909
Passau 4856 1344
Augsburg 4833 1089
Koblenz 5033 759
Dortmund 5148 741
Bochum 5145 728
Duisburg 5142 679
Wuppertal 5124 715
Essen 5145 701
Jena 5093 1158

The formulation in Z follows below. Please note that P[] holds all subsets of the cities. As

a result  cities is about as far as one can get with this approach. Information on how to solve

much larger instances can be found on the  website.

s e t V : = { r e a d " t s p . d a t " a s " <1s > " comment " # " } ;
s e t E : = { < i , j > i n V * V w i t h i < j } ;
s e t P [ ] : = powerset ( V ) ;
s e t K : = i n d e x s e t ( P ) ;

param px [ V ] : = r e a d " t s p . d a t " a s " <1s > 2n " comment " # " ;
param py [ V ] : = r e a d " t s p . d a t " a s " <1s > 3n " comment " # " ;

defnumb d i s t ( a , b ) : = s q r t ( ( px [ a ]−px [ b ] ) ^ 2 + ( py [ a ]−py [ b ] ) ^ 2 ) ;

v a r x [ E ] b i n a r y ;

m i n i m i z e c o s t : sum < i , j > i n E : d i s t ( i , j ) * x [ i , j ] ;

s u b t o two_connected : f o r a l l <v> i n V do
( sum <v , j > i n E : x [ v , j ] ) + ( sum < i , v> i n E : x [ i , v ] ) == 2 ;

s u b t o n o _ s u b t o u r :
f o r a l l <k> i n K w i t h

http://www.tsp.gatech.edu
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c a r d ( P [ k ] ) > 2 and c a r d ( P [ k ] ) < c a r d ( V ) − 2 do
sum < i , j > i n E w i t h < i > i n P [ k ] and < j > i n P [ k ] : x [ i , j ]
<= c a r d ( P [ k ] ) − 1 ;

The resulting  has  variables, , constraints, and ,, non-zero entries in the

constraint matrix, giving an -file size of  .  solves this to optimality without

branching in less than a minute.

An optimal tour for the data above is Berlin, Hamburg, Hannover, Dortmund, Bochum,

Wuppertal, Essen, Duisburg, Trier, Koblenz, Frankfurt, Heidelberg, Karlsruhe, Stuttgart, Augs-
burg, Passau, Bayreuth, Jena, Leipzig, Berlin.

. The capacitated facility location problem

Here we give a formulation of the capacitated facility location problem. It may also be consid-

ered as a kind of bin packing problem with packing costs and variable sized bins, or as a cutting

stock problem with cutting costs.
Given a set of possible plants P to build, and a set of stores S with a certain demand δs that

has to be satisfied, we have to decide which plant should serve which store. We have costs cp

for building plant p and cps for transporting the goods from plant p to store s. Each plant has
only a limited capacity κp. We insist that each store is served by exactly one plant. Of course

we are looking for the cheapest solution:

min
∑

p∈P

cpzp +
∑

p∈P,s∈S

cpsxps subject to

∑

p∈P

xps = 1 for all s ∈ S ()

xps 6 zp for all s ∈ S, p ∈ P ()
∑

s∈S

δsxps 6 κp for all p ∈ P ()

xps, zp ∈ {0, 1} for all p ∈ P, s ∈ S

We use binary variables zp, which are set to one, if and only if plant p is to be built. Addi-
tionally we have binary variables xps, which are set to one if and only if plant p serves shop s.

Equation () demands that each store is assigned to exactly one plant. Inequality () makes sure
that a plant that serves a shop is built. Inequality () assures that the shops are served by a plant

which does not exceed its capacity. Putting this into Z yields the program shown on the

next page. The optimal solution for the instance described by the program is to build plants A
and C. Stores , , and  are served by plant A and the others by plant C. The total cost is .

Only  simplex iterations are needed to reach the optimal solution.
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s e t PLANTS : = { " A " , " B " , " C " , " D" } ;
s e t STORES : = { 1 . . 9 } ;
s e t PS : = PLANTS * STORES ;

# How much does i t c o s t t o b u i l d a p l a n t and what c a p a c i t y
# w i l l i t then have ?
param b u i l d i n g [ PLANTS ] : = < " A " > 5 0 0 , < " B " > 6 0 0 , < " C " > 7 0 0 , < " D" > 8 0 0 ;
param c a p a c i t y [ PLANTS ] : = < " A " > 4 0 , < " B " > 5 5 , < " C " > 7 3 , < " D" > 9 0 ;

# The demand o f each s t o r e
param demand [ STORES ] : = <1> 1 0 , <2> 1 4 ,

<3> 1 7 , <4> 8 ,
<5> 9 , <6> 1 2 ,
<7> 1 1 , <8> 1 5 ,
<9> 1 6 ;

# T r a n s p o r t a t i o n c o s t from each p l a n t t o each s t o r e
param t r a n s p o r t [ PS ] : =

| 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 |
| " A " | 5 5 , 4 , 1 7 , 3 3 , 4 7 , 9 8 , 1 9 , 1 0 , 6 |
| " B " | 4 2 , 1 2 , 4 , 2 3 , 1 6 , 7 8 , 4 7 , 9 , 82 |
| " C " | 1 7 , 3 4 , 6 5 , 2 5 , 7 , 6 7 , 4 5 , 1 3 , 54 |
| " D" | 6 0 , 8 , 7 9 , 2 4 , 2 8 , 1 9 , 6 2 , 1 8 , 45 | ;

v a r x [ PS ] b i n a r y ; # I s p l a n t p s u p p l y i n g s t o r e s ?
v a r z [ PLANTS ] b i n a r y ; # I s p l a n t p b u i l t ?

# We want i t cheap
m i n i m i z e c o s t : sum <p> i n PLANTS : b u i l d i n g [ p ] * z [ p ]

+ sum <p , s > i n PS : t r a n s p o r t [ p , s ] * x [ p , s ] ;

# Each s t o r e i s s u p p l i e d by e x a c t l y one p l a n t
s u b t o a s s i g n :

f o r a l l <s > i n STORES do
sum <p> i n PLANTS : x [ p , s ] == 1 ;

# To be a b l e t o s u p p l y a s t o r e , a p l a n t must be b u i l t
s u b t o b u i l d :

f o r a l l <p , s > i n PS do
x [ p , s ] <= z [ p ] ;

# The p l a n t must be a b l e t o meet t h e demands from a l l s t o r e s
# t h a t a r e a s s i g n e d t o i t
s u b t o l i m i t :

f o r a l l <p> i n PLANTS do
sum <s > i n S : demand [ s ] * x [ p , s ] <= c a p a c i t y [ p ] ;
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. The n-queens problem

The problem is to place n queens on a n×n chessboard so that no two queens are on the same
row, column or diagonal. The n-queens problem is a classic combinatorial search problem

often used to test the performance of algorithms that solve satisfiability problems. Note though,

that there are algorithms available which need linear time in practise, like, for example, those of
[SG]. We will show four different models for the problem and compare their performance.

The integer model

The first formulation uses one general integer variable for each row of the board. Each variable
can assume the value of a column, i. e. we have n variables with bounds 1 . . . n. Next we use

the vabs extended function to model an all different constraint on the variables (see constraint

c). This makes sure that no queen is located on the same column than any other queen. The
second constraint (c) is used to block all the diagonals of a queen by demanding that the

absolute value of the row distance and the column distance of each pair of queens are different.

We model a 6= b by abs(a − b) > 1.
Note that this formulation only works if a queen can be placed in each row, i. e. if the size

of the board is at least 4 × 4.

param queens : = 8 ;

s e t C : = { 1 . . queens } ;
s e t P : = { < i , j > i n C * C w i t h i < j } ;

v a r x [ C ] i n t e g e r >= 1 <= queens ;

s u b t o c1 : f o r a l l < i , j > i n P do vabs ( x [ i ] − x [ j ] ) >= 1 ;
s u b t o c2 : f o r a l l < i , j > i n P do

vabs ( vabs ( x [ i ] − x [ j ] ) − abs ( i − j ) ) >= 1 ;

The following table shows the performance of the model. Since the problem is modeled as a
pure satisfiability problem, the solution time depends only on how long it takes to find a feasible

solution. The columns titled Vars, Cons, and NZ denote the number of variables, constraints
and non-zero entries in the constraint matrix of the generated integer program. Nodes lists the

number of branch-and-bound nodes evaluated by the solver, and time gives the solution time

in  seconds.

Queens Vars Cons NZ Nodes Time [s]

8 344 392 951 1,324 <1
12 804 924 2,243 122,394 120
16 1,456 1,680 4,079 >1 mill. >1,700

As we can see, between  and  queens is the maximum instance size we can expect to solve

with this model. Neither changing the  parameters to aggressive cut generation nor set-
ting emphasis on integer feasibility improves the performance significantly.

The binary models

Another approach to model the problem is to have one binary variable for each square of the

board. The variable is one if and only if a queen is on this square and we maximize the number
of queens on the board.

Which is, in fact, rather random.
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For each square we compute in advance which other squares are blocked if a queen is placed

on this particular square. Then the extended vif constraint is used to set the variables of the
blocked squares to zero if a queen is placed.

param columns : = 8 ;

s e t C : = { 1 . . columns } ;
s e t CxC : = C * C ;

s e t TABU[ < i , j > i n CxC ] : = { <m, n> i n CxC w i t h (m ! = i o r n ! = j )
and (m == i o r n == j o r abs (m − i ) == abs ( n − j ) ) } ;

v a r x [ CxC ] b i n a r y ;

maximize queens : sum < i , j > i n CxC : x [ i , j ] ;

s u b t o c1 : f o r a l l < i , j > i n CxC do v i f x [ i , j ] == 1 then
sum <m, n> i n TABU [ i , j ] : x [m, n ] <= 0 end ;

Using extended formulations can make the models more comprehensible. For example, replac-

ing constraint c in line  with an equivalent one that does not use vif as shown below, leads
to a formulation that is much harder to understand.

s u b t o c2 : f o r a l l < i , j > i n CxC do
c a r d ( TABU [ i , j ] ) * x [ i , j ]

+ sum <m, n> i n TABU [ i , j ] : x [m, n ] <= c a r d ( TABU [ i , j ] ) ;

After the application of the  presolve procedure both formulations result in identical

integer programs. The performance of the model is shown in the following table. S indicates

the  settings used: Either (D)efault, (C)uts, or (F)easibility . Root Node indicates the
objective function value of the  relaxation of the root node.

Queens S Vars Cons NZ Root Node Nodes Time [s]

8 D 384 448 2,352 13.4301 241 <1
C 8.0000 0 <1

12 D 864 1,008 7,208 23.4463 20,911 4
C 12.0000 0 <1

16 D 1,536 1,792 16,224 35.1807 281,030 1,662
C 16.0000 54 8

24 C 3,456 4,032 51,856 24.0000 38 42
32 C 6,144 7,168 119,488 56.4756 >5,500 >2,000

This approach solves instances with more than  queens. The use of aggressive cut generation

improves the upper bound on the objective function significantly, though it can be observed
that for values of n larger than   is not able to deduce the trivial upper bound of n. If

we use the following formulation instead of constraint c, this changes:

s u b t o c3 : f o r a l l < i , j > i n CxC do
f o r a l l <m, n> i n TABU [ i , j ] do x [ i , j ] + x [m, n ] <= 1 ;

Cuts: mip cuts all 2 and mip strategy probing 3.
Feasibility: mip cuts all -1 and mip emph 1
For the  queens instance the optimal solution is found after  nodes, but the upper bound is still

..





Z

As shown in the table below, the optimal upper bound on the objective function is always found

in the root node. This leads to a similar situation as in the integer formulation, i. e. the solution
time depends mainly on the time it needs to find the optimal solution. While reducing the

number of branch-and-bound nodes evaluated, aggressive cut generation increases the total
solution time.

With this approach instances up to  queens can be solved. At this point the integer

program gets too large to be generated. Even though the  presolve routine is able to
aggregate the constraints again, Z needs too much memory to generate the . The column

labeled Pres. NZ lists the number of non-zero entries after the presolve procedure.

Pres. Root Time
Queens S Vars Cons NZ NZ Node Nodes [s]

16 D 256 12,640 25,280 1,594 16.0 0 <1
32 D 1,024 105,152 210,304 6,060 32.0 58 5
64 D 4,096 857,472 1,714,944 23,970 64.0 110 60
64 C 64.0 30 89
96 D 9,216 2,912,320 5,824,640 53,829 96.0 70 193
96 C 96.0 30 410
96 F 96.0 69 66

Finally, we will try the following set packing formulation:

s u b t o row : f o r a l l < i > i n C do
sum < i , j > i n CxC : x [ i , j ] <= 1 ;

s u b t o c o l : f o r a l l < j > i n C do
sum < i , j > i n CxC : x [ i , j ] <= 1 ;

s u b t o diag_row_do : f o r a l l < i > i n C do
sum <m, n> i n CxC w i t h m − i == n − 1 : x [m, n ] <= 1 ;

s u b t o diag_row_up : f o r a l l < i > i n C do
sum <m, n> i n CxC w i t h m − i == 1 − n : x [m, n ] <= 1 ;

s u b t o d i a g _ c o l _ d o : f o r a l l < j > i n C do
sum <m, n> i n CxC w i t h m − 1 == n − j : x [m, n ] <= 1 ;

s u b t o d i a g _ c o l _ u p : f o r a l l < j > i n C do
sum <m, n> i n CxC w i t h c a r d ( C ) − m == n − j : x [m, n ] <= 1 ;

Here again, the upper bound on the objective function is always optimal. The size of the gen-

erated  is even smaller than that of the former model after presolve. The results for different
instances size are shown in the following table:

Queens S Vars Cons NZ Root Node Nodes Time [s]

64 D 4,096 384 16,512 64.0 0 <1
96 D 9,216 576 37,056 96.0 1680 331
96 C 96.0 1200 338
96 F 96.0 121 15

128 D 16,384 768 65,792 128.0 >7000 >3600
128 F 128.0 309 90
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In case of the  queens instance with default settings, a solution with  queens is found after

 branch-and-bound nodes, but  was not able to find the optimal solution within an
hour. From the performance of the Feasible setting it can be presumed that generating cuts is

not beneficial for this model.
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 Error messages

Here is a (hopefully) complete list of the incomprehensible error messages Z can produce:

 Bad filename
The name given with the -o option is either missing, a directory name, or starts with a

dot.

 File write error
Some error occurred when writing to an output file. A description of the error follows

on the next line. For the meaning consult your OS documentation.

 Output format not supported, using LP format

You tried to select another format then lp, mps, or hum.

 File open failed

Some error occurred when trying to open a file for writing. A description of the error

follows on the next line. For the meaning consult your OS documentation.

 Duplicate constraint name “xxx”

Two subto statements have the same name.

 Empty LHS, constraint trivially violated

One side of your constraint is empty and the other not equal to zero. Most frequently
this happens, when a set to be summed up is empty.

 Range must be l 6 x 6 u, or u > x > l

If you specify a range you must have the same comparison operators on both sides.

 Empty Term with nonempty LHS/RHS, constraint trivially violated
The middle of your constraint is empty and either the left- or right-hand side of the

range is not zero. This most frequently happens, when a set to be summed up is empty.

 LHS/RHS contradiction, constraint trivially violated

The lower side of your range is bigger than the upper side, e.g. 15 6 x 6 2.

 Division by zero
You tried to divide by zero. This is not a good idea.

 Modulo by zero
You tried to compute a number modulo zero. This does not work well.

 Exponent value xxx is too big or not an integer
It is only allowed to raise a number to the power of integers. Also trying to raise a

number to the power of more than two billion is prohibited.

 Factorial value xxx is too big or not an integer

You can only compute the factorial of integers. Also computing the factorial of a number

bigger then two billion is generally a bad idea. See also Error .

 Negative factorial value

To compute the factorial of a number it has to be positive. In case you need it for a
negative number, remember that for all even numbers the outcome will be positive and

for all odd number negative.

 Timeout!

You tried to compute a number bigger than 1000!. See also the footnote to Error .

The behavior of this operation could easily be implemented as for(;;) or more elaborate as void
f(){f();}.
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 Illegal value type in min: xxx only numbers are possible

You tried to build the minimum of some strings.

 Illegal value type in max: xxx only numbers are possible
You tried to build the maximum of some strings.

 Comparison of different types

You tried to compare apples with oranges, i.e, numbers with strings. Note that the use

of an undefined parameter could also lead to this message.

 xxx of sets with different dimension
To apply Operation xxx (union, minus, intersection, symmetric difference) on two sets,

both must have the same dimension tuples,i. e. the tuples must have the same number
of components.

 Minus of incompatible sets

To apply Operation xxx (union, minus, intersection, symmetric difference) on two sets,

both must have tuples of the same type,i. e. the components of the tuples must have the
same type (number, string).

 “from” value xxx in range too big or not an integer

To generate a set, the “from” number must be an integer with an absolute value of less

than two billion.

 “upto” value xxx in range too big or not an integer
To generate a set, the “upto” number must be an integer with an absolute value of less

than two billion.

 “step” value xxx in range too big or not an integer
To generate a set, the “step” number must be an integer with an absolute value of less

than two billion.

 Zero “step” value in range

The given “step” value for the generation of a set is zero. So the “upto” value can never
be reached.

 Illegal value type in tuple: xxx only numbers are possible

The selection tuple in a call to the proj function can only contain numbers.

 Index value xxx in proj too big or not an integer

The value given in a selection tuple of a proj function is not an integer or bigger than
two billion.

 Illegal index xxx, set has only dimension yyy
The index value given in a selection tuple is bigger than the dimension of the tuples in
the set.

 Illegal element xxx for symbol

The index tuple used in the initialization list of a index set, is not member of the index

set of the set. E.g, set A[{ 1 to 5 }] := <1> { 1 }, <6> { 2 };

 Values in parameter list missing, probably wrong read template
Probably the template of a read statement looks like "<1n>" only having a tuple, in-

stead of "<1n> 2n".

 Unknown symbol xxx
A name was used, that is not defined anywhere in scope.

 Illegal element xxx for symbol
The index tuple given in the initialization is not member of the index set of the param-

eter.


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 Index set for parameter xxx is empty

The attempt was made to declare an indexed parameter with the empty set as index set.
Most likely the index set has a with clause which has rejected all elements.

 Lower bound for var xxx set to infinity – ignored (warning)
In the Z code something like > infinity must have appeared. This makes no

sense and is therefore ignored.

 Upper bound for var xxx set to -infinity – ignored (warning)

In the Z code something like 6 -infinity must have appeared. This makes no

sense and is therefore ignored.

 Priority/Startval for continuous var xxx ignored (warning)

There has been set a priority or a starting value for a continuous (real) variable. This
is not possible and therefore ignored.

 Lower bound for integral var xxx truncated to yyy (warning)
An integral variable can only have an integral bound. So the given non integral bound

was adjusted.

 Upper bound for integral var xxx truncated to yyy (warning)

An integral variable can only have an integral bound. So the given non integral bound

was adjusted.

 Infeasible due to conflicting bounds for var xxx
The upper bound given for a variable was smaller than the lower bound.

 Unknown index xxx for symbol yyy
The index tuple given is not member of the index set of the symbol.

 Size for subsets xxx is too big or not an integer

The cardinality for the subsets to generate must be given as an integer smaller than two

billion.

 Tried to build subsets of empty set

The set given to build the subsets of, was the empty set.

 Illegal size for subsets xxx, should be between  and yyy
The cardinality for the subsets to generate must be between  and the cardinality of the
base set.

 Tried to build powerset of empty set
The set given to build the powerset of, was the empty set.

 use value xxx is too big or not an integer
The use value must be given as an integer smaller than two billion.

 use value xxx is not positive
Negative or zero values for the use parameter are not allowed.

 skip value xxx is too big or not an integer

The skip value must be given as an integer smaller than two billion.

 skip value xxx is not positive

Negative or zero values for the skip parameter are not allowed.

 Not a valid read template

A read template must look something like "<1n,2n>". There have to be a < and a >

in this order.
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 Invalid read template syntax

Apart from any delimiters like <, >, and commas a template must consists of number
character pairs like 1n, 3s.

 Invalid field number xxx
The field numbers in a template have to be between  and .

 Invalid field type xxx
The only possible field types are n and s.

 Invalid read template, not enough fields
There has to be at least one field inside the delimiters.

 Not enough fields in data

The template specified a field number that is higher than the actual number of field
found in the data.

 Not enough fields in data (value)
The template specified a field number that is higher than the actual number of field

found in the data. The error occurred after the index tuple in the value field.

 Read from file found no data

Not a single record could be read out of the data file. Either the file is empty, or all lines

are comments.

 Type error, expected xxx got yyy
The type found was not the expected one, e.g. subtracting a string from a number would
result in this message.

 Comparison of elements with different types xxx / yyy
Two elements from different tuples were compared and found to be of different types.

 Line xxx: Unterminated string
This line has an odd number of " characters. A String was started, but not ended.

 Line xxx: Trailing "yyy" ignored (warning)
Something was found after the last semicolon in the file.

 Line xxx: Syntax Error
A new statement was not started with one of the keywords: set, param,var, minimize,

maximize, subto, or do.

 Duplicate element xxx for set rejected (warning)
An element was added to a set that was already in it.

 Comparison of different dimension sets (warning)
Two sets were compared, but have different dimension tuples. (This means they never

had a chance to be equal, other then being empty sets.)

 Duplicate element xxx for symbol yyy rejected (warning)

An element that was already there was added to a symbol.

 Comparison of different dimension tuples (warning)

Two tuples with different dimensions were compared.

 No program statements to execute

No Z statements were found in the files loaded.

 Execute must return void element

This should not happen. If you encounter this error please email the .zpl file to

mailto:koch@zib.de.
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mailto:koch@zib.de


Z

 Uninitialized local parameter xxx in call of define yyy
A define was called and one of the arguments was a “name” (of a variable) for which no
value was defined.

 Wrong number of arguments (xxx instead of yyy) for call of define zzz
A define was called with a different number of arguments than in its definition.

 Wrong number of entries (xxx) in table line, expected yyy entries
Each line of a parameter initialization table must have exactly the same number of entries

as the index (first) line of the table.

 Illegal type in element xxx for symbol

A parameter can only have a single value type. Either numbers or strings. In the initial-

ization both types were present.

 Numeric field xxx read as "yyy". This is not a number

It was tried to read a field with an ’n’ designation in the template, but what was read is
not a valid number.

 Illegal syntax for command line define "xxx" – ignored (warning)
A parameter definition using the command line -D flag, must have the form name=value.

The namemust be a legal identifier, i. e. it has to start with a letter and may consist only

out of letters and numbers including the underscore.

 Empty LHS, in Boolean constraint (warning)

The left hand side, i. e. the term with the variables, is empty.

 Boolean constraint not all integer

No continuous (real) variables are allowed in a Boolean constraint.

 Conditional always true or false due to bounds (warning)

All or part of a Boolean constraint are always either true or false, due to the bounds of

variables.

 Conditional only possible on bounded constraints

A Boolean constraint has at least one variable without finite bounds.

 Conditional constraint always true due to bounds (warning)

The result part of a conditional constraint is always true anyway. This is due to the
bounds of the variables involved.

 Empty LHS, not allowed in conditional constraint
The result part of a conditional constraint may not be empty.

 Empty LHS, in variable vabs
There are no variables in the argument to a vabs function. Either everything is zero, or

just use abs.

 vabs term not all integer

There are non integer variables in the argument to a vabs function. Due to numerical

reasons continuous variables are not allowed as arguments to vabs.

 vabs term not bounded

The term inside a vabs has at least one unbounded variable.

 Term in Boolean constraint not bounded

The term inside a vif has at least one unbounded variable.

 Minimizing over empty set – zero assumed (warning)

The index expression for the minimization was empty. The result used for this expres-

sion was zero.





Z

 Maximizing over empty set – zero assumed (warning)

The index expression for the maximization was empty. The result used for this expres-
sion was zero.

 Index tuple has wrong dimension
The number of elements in an index tuple is different from the dimension of the tuples

in the set that is indexed.

 Tuple number xxx is too big or not an integer

The tuple number must be given as an integer smaller than two billion.

 Component number xxx is too big or not an integer

The component number must be given as an integer smaller than two billion.

 Tuple number xxx is not a valid value between ..yyy
The tuple number must be between one and the cardinality of the set.

 Component number xxx is not a valid value between ..yyy
The component number must be between one and the dimension of the set.

 Different dimension tuples in set initialization
The tuples that should be part of the list have different dimension.

 Indexing tuple xxx has wrong dimension yyy, expected zzz
The index tuple of an entry in a parameter initialization list must have the same dimen-

sion as the indexing set of the parameter. This is just another kind of error .

 Genuine empty set as index set

The set of an index set is always the empty set.

 Indexing tuple xxx has wrong dimension yyy, expected zzz
The index tuple of an entry in a set initialization list must have the same dimension as

the indexing set of the set. If you use a powerset or subset instruction, the index
set has to be one dimension.

 Empty index set for set
The index set for a set is empty.

 Incompatible index tuple
The index tuple given had fixed components. The type of such a component was not the

same as the type of the same component of tuples from the set.

 Constants are not allowed in SOS declarations
When declaring an SOS, weights are only allowed together with variabled. A weight

alone does not make sense.

 Weights are not unique for SOS xxx (warning)

All weights assigned to variables in an special ordered set have to be unique.

 Invalid read template, only one field allowed

When reading a single parameter value, the read template must consist of a single field

specification.

 Indexing over empty set (warning)

The indexing set turns out to be empty.

 Indexing tuple is fixed (warning)

The indexing tuple of an index expression is completely fixed. As a result only this one
element will be searched for.
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: Randomfunction parameter minimum= xxx>= maximum= yyy
The second parameter to the function random has to be strictly greater than the first
parameter.

 log(): OS specific domain or range error message
Function log was called with a zero or negative argument, or the argument was too

small to be represented as a double.

 sqrt(): OS specific domain error message
Function sqrt was called with a negative argument.

 ln(): OS specific domain or range error message
Function ln was called with a zero or negative argument, or the argument was too small

to be represented as a double.

 parse error: expecting xxx (or yyy)

Parsing error. What was found was not what was expected. The statement you entered
is not valid.

 Parser failed
The parsing routine failed. This should not happen. If you encounter this error please

email the .zpl file to mailto:koch@zib.de.

 Check failed!
A check instruction did not evaluate to true.
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